
Total Compute

Arm Limited

Sep 11, 2024

TOTAL COMPUTE:

1 Total Compute: TC23.1 1
1.1 Total Compute Platform Software Components . 1

1.1.1 RSE Firmware . 1
1.1.2 SCP Firmware . 2
1.1.3 AP Secure World Software . 2
1.1.4 AP Non-Secure World Software . 4

1.2 Instructions: Obtaining Total Compute software deliverables . 5
1.3 TC Software Stack Overview . 5
1.4 User Guide . 6

1.4.1 Notice . 9
1.4.2 Prerequisites . 9
1.4.3 Download the source code and build . 10
1.4.4 Provided components . 15
1.4.5 Obtaining the TC3 FVP . 18
1.4.6 Running the software on FVP . 18
1.4.7 Running sanity tests . 20
1.4.8 Debugging on Arm Development Studio . 32
1.4.9 Feature Guide . 37

1.5 System profiling, Applications tracing and Trace analysis . 47
1.5.1 Simpleperf . 48
1.5.2 Perf . 54
1.5.3 Perfetto . 60

1.6 Security . 67
1.6.1 Assumptions and Delegated Mitigations . 67

1.7 Expected test results . 68
1.7.1 SCMI unit tests . 69
1.7.2 TF-A unit tests . 71
1.7.3 TF-M unit tests . 73
1.7.4 OP-TEE unit tests . 74
1.7.5 Trusted Services and Client application unit tests . 75
1.7.6 Trusty unit tests . 78
1.7.7 Microdroid Demo unit tests . 79
1.7.8 Kernel selftest unit tests . 85
1.7.9 Rotational scheduler unit tests . 86
1.7.10 MPAM unit tests . 86
1.7.11 MPMM unit tests . 87
1.7.12 BTI unit tests . 88
1.7.13 MTE unit tests . 90
1.7.14 PAUTH unit tests . 90
1.7.15 EAS with Lisa unit tests . 92

i

1.7.16 CPU hardware capabilities . 95
1.7.17 GPU GLES Integration tests . 95
1.7.18 GPU EGL Integration tests . 98

1.8 Troubleshooting: common problems and solutions . 100
1.8.1 Docker . 101

1.9 Release notes - TC23.1 . 101
1.9.1 Release tag . 102
1.9.2 Platform Support . 102
1.9.3 Components . 102
1.9.4 Hardware Features . 102
1.9.5 Software Features . 103
1.9.6 Tools Support . 104
1.9.7 Optimizations . 104
1.9.8 Limitations . 104
1.9.9 Known issues . 104
1.9.10 Support . 108

2 Previous releases 109
2.1 TC2 release tags . 109
2.2 TC1 release tags . 109
2.3 TC0 release tags . 109

ii

CHAPTER

ONE

TOTAL COMPUTE: TC23.1

Total Compute is an approach to moving beyond optimizing individual IP to take a system-level solution view of the
SoC that puts use cases and experiences at the heart of the designs.

Total Compute focuses on optimizing Performance, Security, and Developer Access across Arm’s IP, software, and
tools. This means higher-performing, more immersive, and more secure experiences on devices coupled with an easier
app and software development process.

1.1 Total Compute Platform Software Components

1.1.1 RSE Firmware

Runtime Security Engine (RSE) - previously known as Runtime Security SubSystem (RSS) - serves as the Root of
Trust for the Total Compute platform.

RSE BL1 code is the first software that executes right after a cold reset or Power-on.

RSE initially boots from immutable code (BL1_1) in its internal ROM, before jumping to BL1_2, which is provisioned
and hash-locked in RSE OTP. The updatable MCUboot BL2 boot stage is loaded from the flash into RSE SRAM,
where it is authenticated. BL2 loads and authenticates the TF-M runtime into RSE SRAM from host flash. BL2 is also
responsible for loading initial boot code into other subsystems within Total Compute as below.

1. SCP BL1

2. AP BL1

The following diagram illustrates the boot flow sequence:

The following diagram illustrates the certificate structure adopted in the TC platform:

Considering the previous diagram, the boxes do indicate the certificates, while the arrows do indicate the parent-child
relationships (who loads who).

1

Total Compute

1.1.2 SCP Firmware

The System Control Processor (SCP) is a compute unit of Total Compute and is responsible for low-level system
management. The SCP is a Cortex-M85 processor with a set of dedicated peripherals and interfaces that you can
extend. SCP firmware supports:

1. Power-up sequence and system start-up

2. Initial hardware configuration

3. Clock management

4. Servicing power state requests from the OS Power Management (OSPM) software

It performs the following functions:

1. Sets up generic timer, UART console and clocks

2. Powers ON primary AP CPU

3. Responds to SCMI messages via MHUv3 for CPU power control and DVFS

4. Power Domain management

5. Clock management

1.1.3 AP Secure World Software

Secure software/firmware is a trusted software component that runs in the AP secure world. It mainly consists of AP
firmware, Secure Partition Manager and Secure Partitions (OP-TEE, Trusted Services, Trusty).

AP firmware

The AP firmware consists of the code that is required to boot Total Compute platform up to the point where the OS
execution starts. This firmware performs architecture and platform initialization. It also loads and initializes secure
world images like Secure partition manager and Trusted OS.

Trusted Firmware-A (TF-A) BL1

BL1 performs minimal architectural initialization (like exception vectors, CPU initialization) and Platform initializa-
tion. It loads the BL2 image and passes control to it.

Trusted Firmware-A (TF-A) BL2

BL2 runs at S-EL1 and performs architectural initialization required for subsequent stages of TF-A and normal world
software. It configures the TrustZone Controller and carves out memory region in DRAM for secure and non-secure
use. BL2 loads below images:

1. EL3 Runtime Software (BL31 image)

2. Secure Partition Manager (BL32 image)

3. Non-Trusted firmware - U-boot (BL33 image)

4. Secure Partitions images (OP-TEE and Trusted Services, or Trusty)

2 Chapter 1. Total Compute: TC23.1

Total Compute

Trusted Firmware-A (TF-A) BL31

BL2 loads EL3 Runtime Software (BL31) and BL1 passes control to BL31 at EL3. In Total Compute BL31 runs at
trusted SRAM. It provides the below mentioned runtime services:

1. Power State Coordination Interface (PSCI)

2. System Control and Management Interface (SCMI)

3. Secure Monitor framework

4. Secure Partition Manager Dispatcher

Secure Partition Manager

Total Compute enables FEAT S-EL2 architectural extension, and it uses Hafnium as Secure Partition Manager Core
(SPMC). BL32 option in TF-A is re-purposed to specify the SPMC image. The SPMC component runs at S-EL2
exception level.

Secure Partitions

Software image isolated using SPM is Secure Partition. Total Compute enables OP-TEE, Trusted Services and Trusty
as Secure Partitions.

OP-TEE

OP-TEE Trusted OS is virtualized using Hafnium at S-EL2. OP-TEE OS for Total Compute is built with FF-A and
S-EL2 SPMC support. This enables OP-TEE as a Secure Partition running in an isolated address space managed by
Hafnium. The OP-TEE kernel runs at S-EL1 with Trusted applications running at S-EL0.

Trusted Services

Trusted Services like Crypto Service and Internal Trusted Storage runs as S-EL0 Secure Partitions.

Trusty

Trusty is a secure Operating System (OS) that provides a Trusted Execution Environment (TEE) for Android. Trusty
is virtualized using Hafnium at S-EL2. FF-A support is added for Total Compute. Trusty runs as a Secure Partition
running in an isolated address space managed by Hafnium. The Trusty kernel runs at S-EL1 with Trusted applications
running at S-EL0.

1.1. Total Compute Platform Software Components 3

Total Compute

1.1.4 AP Non-Secure World Software

U-Boot

TF-A BL31 passes execution control to U-boot bootloader (BL33). U-boot in Total Compute has support for multiple
image formats:

1. FitImage format: this contains the Linux kernel and Buildroot ramdisk which are authenticated and loaded in
their respective positions in DRAM and execution is handed off to the kernel.

2. Android boot image: This contains the Linux kernel and Android ramdisk. If using Android Verified Boot (AVB)
boot.img is loaded via virtio to DRAM, authenticated and then execution is handed off to the kernel.

Linux Kernel

Linux Kernel in Total Compute contains the subsystem-specific features that demonstrate the capabilities of Total
Compute. Apart from default configuration, it enables:

1. Arm MHUv3 controller driver

2. Arm FF-A driver

3. OP-TEE driver with FF-A Transport Support

4. Arm FF-A user space interface driver

5. Trusty driver with FF-A Transport Support

6. Virtualization using pKVM

System MMU (aka SMMU or IOMMU)

System MMU, also known as SMMUv3 or IOMMU, is the Arm IP that isolates direct memory accesses from devices
(DMA), and enables devices to access non-contiguous physical memory with configurable memory attributes.

Linux has two SMMUv3 drivers:

• CONFIG_ARM_SMMU_V3 enables the normal kernel driver that executes at EL1;

• CONFIG_ARM_SMMU_V3_PKVM enables a split driver that executes partly at EL2, in the pKVM hypervisor.

When pKVM is enabled (kvm-arm.mode=protected), the pKVM SMMU driver takes precedence over the normal
driver, and protects hypervisor and guest VMs from host DMA. Host device drivers still configure DMA using the
Linux DMA API, and the hypervisor installs the requested virtual-to-physical translations into the SMMU stage-2
page tables, after making sure that a compromised host is not attempting via DMA to access memory it does not own.

Android

Total Compute has support for Android Open-Source Project (AOSP), which contains the Android framework, Native
Libraries, Android Runtime and the Hardware Abstraction Layers (HALs) for Android Operating system. The Total
Compute device profile defines the required variables for Android such as partition size and product packages and has
support for the below configuration of Android:

1. Software rendering: This profile has support for Android UI and boots Android to home screen. It uses Swift-
Shader to achieve this. Swiftshader is a CPU base implementation of the Vulkan graphics API by Google.

2. Hardware rendering: This profile also has support for Android UI and boots Android to home screen. The
Mali-Drage GPU model is used for rendering.

4 Chapter 1. Total Compute: TC23.1

Total Compute

Microdroid

Microdroid is a lightweight version of Android that runs in a protected virtual machine (pVM) and is managed by
Android using CrosVM.

Buildroot

A minimal rootfs that is useful for testing the bsp and boots quickly. The interface is text only and no graphics are
supported.

Debian

This variant is based on the Debian 12 (aka Bookworm) filesystem. This image can be used for development or vali-
dation work that does not imply pixel rendering, as currently there is no support for software or hardware rendering.

TensorFlow Lite Machine Learning

A minimal CMake wrapper project for building TensorFlow Lite applications for Total Compute targets is provided. By
default, this project will build the benchmark_model application, which allows to profile and validate ML inference
flows. However, the developer can easily adapt the project and build any application exposed by TensorFlow Lite.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.2 Instructions: Obtaining Total Compute software deliverables

• To build the TC3 software stack, please refer to the user guide;

• For further details on the latest release and features, please refer to the release notes;

1.3 TC Software Stack Overview

The TC3 software consists of firmware, kernel and file system components that can run on the associated FVP.

Following is presented the high-level list of the software components:

1. SCP firmware – responsible for system initialization, clock and power control;

2. RSE (previously known as RSS) firmware – provides Hardware Root of Trust;

3. AP firmware – Trusted Firmware-A (TF-A);

4. Secure Partition Manager - Hafnium;

5. Secure Partitions:

• OP-TEE Trusted OS in Buildroot;

• Trusted Services in Buildroot;

• Trusty Trusted OS in Android;

6. U-Boot – loads and verifies the fitImage for buildroot boot, containing kernel and filesystem or boot Image
for Android Verified Boot, containing kernel and ramdisk;

1.2. Instructions: Obtaining Total Compute software deliverables 5

Total Compute

7. Kernel – supports the following hardware features:

• Message Handling Unit;

• PAC/MTE/BTI features;

8. Android;

• Supports PAC/MTE/BTI features;

9. Buildroot;

10. Debian;

11. TensorFlow Lite Machine Learning;

For more information on each of the stack components, please refer to the Total Compute Platform Software Compo-
nents section.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.4 User Guide

Contents

• User Guide

– Notice

– Prerequisites

– Download the source code and build

∗ Download the source code

∗ Initial Setup

∗ Build options

· Debian OS build variant

· Android OS build variants

· Hardware vs Software rendering

· Android Verified Boot (AVB)

∗ Build variants configuration

· Buildroot build

· Debian build

· Debian build (without software or GPU hardware rendering support)

· Android build

· Android build with hardware rendering support based on prebuilt binaries

· Android build with hardware rendering support based on DDK source code

· Android build with software rendering support

6 Chapter 1. Total Compute: TC23.1

Total Compute

∗ Build command

∗ More about the build system

∗ Build component requirements

– Provided components

∗ Firmware and Software Components

· Runtime Security Engine (RSE)

· System Control Processor (SCP)

· Trusted Firmware-A

· U-Boot

· Hafnium

· OP-TEE

· S-EL0 trusted-services

· Trusty

· Linux

∗ Distributions

· Buildroot Linux distro

· Debian Linux distro

· Android

∗ Run scripts

– Obtaining the TC3 FVP

– Running the software on FVP

∗ Running Buildroot

∗ Running Debian

∗ Running Android

· Android general common run command

· Android with AVB enabled

∗ Expected behaviour

– Running sanity tests

∗ SCMI

∗ TF-A

∗ TF-M

∗ Validate the TensorFlow Lite ML flow

· Prerequisites

· Manually uploading a TensorFlow Lite ML model for Buildroot or application for Debian
distro

1.4. User Guide 7

Total Compute

· Manually uploading a TensorFlow Lite ML model, Arm Neural Network and application for
Android

· Running the provided TensorFlow Lite ML model examples

∗ OP-TEE

∗ Trusted Services and Client application

∗ Trusty

∗ Microdroid

· Prerequisites

· Run Microdroid demo

· Run Microdroid instance

· Connect to Microdroid instance with ADB

∗ Kernel Selftest

∗ Rotational Scheduler

∗ MPAM

∗ MPMM

∗ BTI

∗ MTE

∗ PAUTH

∗ EAS with LISA

∗ pKVM SMMUv3 driver support validation

∗ CPU hardware capabilities

∗ GPU Integration

· Initial Setup

· Running GLES integration tests

· Running EGL integration tests

· Running Vulkan integration tests

– Debugging on Arm Development Studio

∗ Attach and Debug

∗ Switch between SCP and AP

∗ Enable LLVM parser (for Dwarf5 support)

∗ Arm DS version

– Feature Guide

∗ Firmware Update

· Creating Capsule

· Loading Capsule

· Updating Firmware

8 Chapter 1. Total Compute: TC23.1

Total Compute

∗ AutoFDO in Android

· Prerequisites

· Steps to use AutoFDO

∗ ADB connection on Android

· Connect to the running FVP-model instance

· Upload a file

· Download a file

· Execute a remote command

∗ Set up TAP interface for Android ADB

· Steps to set up the tap interface

· Steps to graceful disable and remove the tap interface

∗ Running and Collecting FVP tracing information

· Getting the list of trace sources

· Executing the FVP-model with traces enabled

∗ DICE/DPE

· Verify DPE from U-boot

· Verify DPE from Microdroid

1.4.1 Notice

The Total Compute 2023 (TC3) software stack uses bash scripts to build a Board Support Package (BSP) and a choice
of three possible distributions including Buildroot, Debian or Android.

1.4.2 Prerequisites

These instructions assume that:

• Your host PC is running Ubuntu Linux 20.04;

• You are running the provided scripts in a bash shell environment;

• This release requires TC3 Fast Model platform (FVP) version 11.26.16.

To get the latest repo tool from Google, please run the following commands:

mkdir -p ~/bin
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo
export PATH=~/bin:$PATH

To build and run Android, the minimum requirements for the host machine can be found at
https://source.android.com/setup/build/requirements. These include:

• at least 250 GB of free disk space to check out the code and an extra 150 GB to build it. If you conduct
multiple builds, you need additional space;

1.4. User Guide 9

https://source.android.com/setup/build/requirements

Total Compute

• at least 64 GB of RAM. Lower amounts may lead to build failures due to out-of-memory (OOM).

To avoid errors while attempting to clone/fetch the different TC software components, your system should have a proper
minimum git config configuration. The following command exemplifies the typical git config configuration
required:

git config --global user.name "<user name>"
git config --global user.email "<email>"
git config --global protocol.version 2

To install and allow access to docker, please run the following commands:

sudo apt install docker.io
ensure docker service is properly started and running
sudo systemctl restart docker

To manage Docker as a non-root user, please run the following commands:

sudo usermod -aG docker $USER
newgrp docker

1.4.3 Download the source code and build

The TC3 software stack supports the following distros:

• Buildroot (a minimal distro containing Busybox);

• Debian (based on Debian 12 Bookworm);

• Android (both Android 14 and Android 13).

Download the source code

To download Buildroot or Debian source code, please define the following environment variable:

export REPO_TARGET=bsp

To download Android source code (a superset of bsp), please define the following environment variable:

export REPO_TARGET=android

Independently of the distribution to be built, create a new folder that will be your workspace (which will henceforth
be referred to as <TC_WORKSPACE> in these instructions) and start the cloning code process by running the following
commands:

mkdir <TC_WORKSPACE>
cd <TC_WORKSPACE>
export TC_BRANCH=refs/tags/TC23.1
repo init -u https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-
→˓manifest \

-m tc3_a14.xml \
-b ${TC_BRANCH} \
-g ${REPO_TARGET}

repo sync -j6

10 Chapter 1. Total Compute: TC23.1

Total Compute

If cloning Android, this is expected to take a very long time. Once this finishes, the current <TC_WORKSPACE>
should have the following structure:

• build-scripts/: the components build scripts;

• run-scripts/: scripts to run the FVP;

• src/: each component’s git repository;

• tests/: different test suites.

Note: The manifest file tc3_a14.xml is for Android 14, which is officially supported in TC23. To checkout code for
Android 13, use tc3_a13.xml instead. Only minimum test is done for Android 13.

Initial Setup

The setup includes two parts:

1. setup a docker image;

2. setup the environment to build TC images.

Setting up a docker image involves pulling the prebuilt docker image from a docker registry. If that fails, it will build
a local docker image.

To setup a docker image, patch the components, install the toolchains and build tools, please run the commands men-
tioned in the following Build variants configuration section, according to the distro and variant of interest.

The various tools will be installed in the <TC_WORKSPACE>/tools/ directory.

Build options

Debian OS build variant

Currently, the Debian OS build distro does not support software or hardware rendering. Considering this limitation,
this build variant should be only used for development or validation work that does not imply pixel rendering.

Android OS build variants

Note: Android based stack takes considerable time to build, so start the build and go grab a cup of coffee!

Hardware vs Software rendering

The Android OS based build distro supports the following variants regarding the use of the GPU rendering:

1.4. User Guide 11

Total Compute

Table 1: List of GPU rendering variants available for Android OS based
build distros

TC_GPU value Description
swr Android display with Swiftshader (software rendering)
hwr Mali GPU (hardware rendering based on DDK source code - please see below

note)
hwr-prebuilt Mali GPU (hardware rendering based on prebuilt binaries)

Note: GPU DDK source code is available only to licensee partners (please contact support@arm.com).

Android Verified Boot (AVB)

The Android images can be built with or without authentication enabled using Android Verified Boot (AVB) through the
use of the -a option. AVB build is done in userdebug mode and takes a longer time to boot as the images are verified.
This option does not influence the way the system boots, rather it adds an optional sanity check on the prerequisite
images.

Build variants configuration

This section provides a quick guide on how to build the different TC build variants using the most common options.

Buildroot build

To setup the environment to build the Buildroot distro, please run the following commands:

export PLATFORM=tc3
export FILESYSTEM=buildroot
export TC_TARGET_FLAVOR=fvp
cd build-scripts
./setup.sh

Debian build

Currently, the Debian build does not support software or hardware rendering. As such, the TC_GPU variable value should
not be defined. The Debian build can still be a valuable resource when just considering other types of development or
validation work, which do not involve pixel rendering.

12 Chapter 1. Total Compute: TC23.1

mailto:support@arm.com

Total Compute

Debian build (without software or GPU hardware rendering support)

To setup the environment to build the Debian distro, please run the following commands:

export PLATFORM=tc3
export FILESYSTEM=debian
export TC_TARGET_FLAVOR=fvp
cd build-scripts
./setup.sh

Android build

Note: Android SDK, which is required to build the benchmark_model application for Android, has its standalone
terms and conditions. These terms and conditions are automatically accepted during Android SDK installation
process and can be found in link.

By default, the Android image is built with Android Verified Boot (AVB) disabled. To override this setting and build
Android with AVB enabled, please run the next command to enable the corresponding flag in addition to any of the
following Android command variants (please note that this needs to be run before running ./setup.sh):

export AVB=true

Android can be built with or without GPU hardware rendering support by setting the TC_GPU environment variable
accordingly, as described in the following command usage examples.

Android build with hardware rendering support based on prebuilt binaries

To build the Android distro with hardware rendering based on prebuilt binaries, please run the following commands:

export PLATFORM=tc3
export FILESYSTEM=android
export TC_ANDROID_VERSION=android14
export TC_GPU=hwr-prebuilt
export TC_TARGET_FLAVOR=fvp
cd build-scripts
./setup.sh

Android build with hardware rendering support based on DDK source code

To build the Android distro with hardware rendering based on DDK source code, please run the following commands:

export PLATFORM=tc3
export FILESYSTEM=android
export TC_ANDROID_VERSION=android14
export TC_GPU=hwr
export TC_TARGET_FLAVOR=fvp
export GPU_DDK_REPO=<PATH TO GPU DDK SOURCE CODE>
export GPU_DDK_VERSION="releases/r49p0_00eac0"

(continues on next page)

1.4. User Guide 13

Total Compute

(continued from previous page)

export LM_LICENSE_FILE=<LICENSE FILE>
export ARMLMD_LICENSE_FILE=<LICENSE FILE>
export ARMCLANG_TOOL=<PATH TO ARMCLANG TOOLCHAIN>
cd build-scripts
./setup.sh

Note: GPU DDK source code is available only to licensee partners (please contact support@arm.com).

Android build with software rendering support

To setup the environment to build the Android distro with software rendering, please run the following commands:

export PLATFORM=tc3
export FILESYSTEM=android
export TC_ANDROID_VERSION=android14
export TC_GPU=swr
export TC_TARGET_FLAVOR=fvp
cd build-scripts
./setup.sh

Warning: If building the TC3 software stack for more than one target, please ensure you run a clean build between
each different build to avoid setup/building errors (refer to the next section More about the build system for command
usage examples on how to do this).

Warning: If running repo sync again is needed at some point, then the setup.sh script also needs to be run
again, as repo sync can discard the patches.

Note: Most builds will be done in parallel using all the available cores by default. To change this number, run export
PARALLELISM=<number of cores>

Build command

To build the whole TC3 software stack for any of the supported distros, simply run:

./run_docker.sh ./build-all.sh build

The output directory (henceforth referred to as <TC_OUTPUT>) is <TC_WORKSPACE>/output/<$PLATFORM>/
<$FILESYSTEM>/<$TC_TARGET_FLAVOR>.

Once the previous process finishes, <TC_OUTPUT> will have two subdirectories:

• tmp_build/ storing individual components’ build files;

• deploy/ storing the final images.

14 Chapter 1. Total Compute: TC23.1

mailto:support@arm.com

Total Compute

More about the build system

The build-all.sh script will build all the components, but each component has its own script, allowing it to be
built, cleaned and deployed separately. All scripts support the clean, build, deploy and patch commands. The
build-all.sh script also supports all, which performs a clean followed by a rebuild of all the stack.

For example, to clean, build and deploy SCP, run:

./run_docker.sh ./build-scp.sh clean

./run_docker.sh ./build-scp.sh build

./run_docker.sh ./build-scp.sh deploy

The platform and filesystem used should be defined as described previously, but they can also be specified as the
following example:

./run_docker.sh ./build-all.sh \
-p $PLATFORM \
-f $FILESYSTEM \
-a $AVB \
-t $TC_TARGET_FLAVOR \
-g $TC_GPU build

Build component requirements

The list of requirements of a specific component can be modified by editing the build_requirements.txt file.
When building a specific component, both the component and the requirements specified after the equal sign will be
sequentially rebuilt, considering current environment variables.

To activate this feature, use the with_reqs option appended to the desired component build command, as illustrated
in the following example:

./run_docker.sh ./build-scp.sh clean build with_reqs

The with_reqs functionality adheres to the specific details mentioned above for build-all.sh.

1.4.4 Provided components

Firmware and Software Components

Runtime Security Engine (RSE)

Based on Runtime Security Engine

Script <TC_WORKSPACE>/build-scripts/build-rse.sh
Files

• <TC_OUTPUT>/deploy/rse_encrypted_cm_provisioning_bundle_0.bin
• <TC_OUTPUT>/deploy/rse_encrypted_dm_provisioning_bundle_0.bin
• <TC_OUTPUT>/deploy/rse_rom.bin

1.4. User Guide 15

https://tf-m-user-guide.trustedfirmware.org/platform/arm/rse/

Total Compute

System Control Processor (SCP)

Based on SCP Firmware

Script <TC_WORKSPACE>/build-scripts/build-scp.sh
Files

• <TC_OUTPUT>/deploy/scp-boot.bin
• <TC_OUTPUT>/deploy/scp-runtime.bin

Trusted Firmware-A

Based on Trusted Firmware-A

Script <TC_WORKSPACE>/build-scripts/build-tfa.sh
Files

• <TC_OUTPUT>/deploy/bl1-tc.bin
• <TC_OUTPUT>/deploy/fip-tc.bin
• <TC_OUTPUT>/deploy/fip_gpt-tc.bin

U-Boot

Based on U-Boot

Script <TC_WORKSPACE>/build-scripts/build-u-boot.sh
Files

• <TC_OUTPUT>/deploy/u-boot.bin

Hafnium

Based on Hafnium

Script <TC_WORKSPACE>/build-scripts/build-hafnium.sh
Files

• <TC_OUTPUT>/deploy/hafnium.bin

OP-TEE

Based on OP-TEE

Script <TC_WORKSPACE>/build-scripts/build-optee-os.sh
Files

• <TC_OUTPUT>/tmp_build/tfa_sp/tee-
pager_v2.bin

16 Chapter 1. Total Compute: TC23.1

https://github.com/ARM-software/SCP-firmware
https://trustedfirmware-a.readthedocs.io/en/latest/
https://gitlab.denx.de/u-boot/u-boot
https://www.trustedfirmware.org/projects/hafnium
https://github.com/OP-TEE/optee_os

Total Compute

S-EL0 trusted-services

Based on Trusted Services

Script <TC_WORKSPACE>/build-scripts/build-trusted-
services.sh

Files
• <TC_OUTPUT>/tmp_build/tfa_sp/crypto.bin
• <TC_OUTPUT>/tmp_build/tfa_sp/internal-

trusted-storage.bin
• <TC_OUTPUT>/tmp_build/tfa_sp/fwu.bin

Trusty

Based on Trusty

Script <TC_WORKSPACE>/build-scripts/build-trusty.sh
Files

• <TC_OUTPUT>/tmp_build/tfa_sp/lk.bin

Linux

The component responsible for building a 6.1 version of the Android Common kernel (ACK).

Script <TC_WORKSPACE>/build-scripts/build-linux.sh
Files

• <TC_OUTPUT>/deploy/Image

Distributions

Buildroot Linux distro

The layer is based on the Buildroot Linux distribution. The provided distribution is based on BusyBox and built using
glibc.

Script <TC_WORKSPACE>/build-scripts/build-buildroot.sh
Files

• <TC_OUTPUT>/deploy/tc-fitImage.bin

1.4. User Guide 17

https://www.trustedfirmware.org/projects/trusted-services/
https://source.android.com/security/trusty
https://android.googlesource.com/kernel/common/
https://github.com/buildroot/buildroot/

Total Compute

Debian Linux distro

Script <TC_WORKSPACE>/build-scripts/build-debian.sh
Files

• <TC_OUTPUT>/deploy/debian.img
• <TC_OUTPUT>/deploy/debian_fs.img

Android

Script <TC_WORKSPACE>/build-scripts/build-android.sh
Files

• <TC_OUTPUT>/deploy/android.img
• <TC_OUTPUT>/deploy/ramdisk_uboot.img
• <TC_OUTPUT>/deploy/system.img
• <TC_OUTPUT>/deploy/userdata.img
• <TC_OUTPUT>/deploy/vendor.img
• <TC_OUTPUT>/deploy/boot.img (AVB only)
• <TC_OUTPUT>/deploy/vbmeta.img (AVB only)

Run scripts

Within the <TC_WORKSPACE>/run-scripts/ there are several convenience functions for testing the software stack.
Usage descriptions for the various scripts are provided in the following sections.

1.4.5 Obtaining the TC3 FVP

To download the latest available TC3 FVP model, please visit the webpage or contact Arm (support@arm.com).

1.4.6 Running the software on FVP

A Fixed Virtual Platform (FVP) of the TC3 platform must be available to run the included run scripts.

The run-scripts structure is as follows:

run-scripts
|--tc3

|--run_model.sh
|-- ...

Ensure that all dependencies are met by running the FVP: ./path/to/FVP_TC3. You should see the FVP launch,
presenting a graphical interface showing information about the current state of the FVP.

The run_model.sh script in <TC_WORKSPACE>/run-scripts/tc3/ will launch the FVP, providing the previously
built images as arguments. The following excerpt contains the command usage help retrieved when running ./
run-scripts/tc3/run_model.sh --help script:

18 Chapter 1. Total Compute: TC23.1

mailto:support@arm.com

Total Compute

$./run-scripts/tc3/run_model.sh --help
<path_to_run_model.sh> [OPTIONS]
REQUIRED OPTIONS:
-m, --model MODEL path to model
-d, --distro {buildroot|android|debian}

distro version
OPTIONAL OPTIONS
-a, --avb {true|false} avb boot, DEFAULT: false
-t, --tap-interface tap interface
-n, --networking {user|tap|none} networking

DEFAULT: tap if tap interface provided, otherwise user
--debug {iris|cadi|none} start a debug server, print the port listening on,

and wait for debugger. DEFAULT: none
-v, --no-visualisation don't spawn a model visualisation window

--telnet don't spawn console windows, only listen on telnet
-- MODEL_ARGS pass all further options directly to the model

Running Buildroot

./run-scripts/tc3/run_model.sh -m <model binary path> -d buildroot

Running Debian

./run-scripts/tc3/run_model.sh -m <model binary path> -d debian

Running Android

Android general common run command

The following command is common to Android builds with AVB disabled, software or any of the hardware rendering
variants. To run any of the mentioned Android variants, please run the following command:

./run-scripts/tc3/run_model.sh -m <model binary path> -d android

Android with AVB enabled

To run Android with AVB enabled, please run the following command:

./run-scripts/tc3/run_model.sh -m <model binary path> -d android -a true

1.4. User Guide 19

Total Compute

Expected behaviour

When the script is run, four terminal instances will be launched:

• terminal_uart_ap used by the non-secure world components U-boot, Linux Kernel and filesystem (Buil-
droot/Debian/Android);

• terminal_uart1_ap used by the secure world components TF-A, Hafnium, Trusty and OP-TEE;

• terminal_s0 used for the SCP logs;

• terminal_s1 used by RSE logs.

Once the FVP is running, the hardware Root of Trust will verify AP and SCP images, initialize various crypto services
and then handover execution to the SCP. SCP will bring the AP out of reset. The AP will start to boot Trusted Firmware-
A, Hafnium, Secure Partitions (OP-TEE, Trusted Services in Buildroot and Trusty in Android) then U-Boot, and finally
the root filesystem of the corresponding distro.

When booting Buildroot or Debian, the model will boot the Linux kernel and present a login prompt on the
terminal_uart_ap window. Login using the username root and the password root (password is only required
for Debian). You may need to hit Enter for the prompt to appear.

When booting Android, the GUI window Fast Models - Total Compute 3 DP0 shows the Android logo and on
boot completion, the window will show the typical Android home screen.

1.4.7 Running sanity tests

This section provides information on some of the suggested sanity tests that can be executed to exercise and validate
the TC Software stack functionality, as well as information regarding the expected behaviour and test results.

Note: The information presented for any of the sanity tests described in this section should NOT be considered
as indicative of hardware performance. These tests and the FVP model are only intended to validate the functional
flow and behaviour for each of the features.

SCMI

This test is supported in Buildroot only. When setup the environment to build the Buildroot distro, an extra command
is needed:

export SCMI_TESTS=true

before executing the script ./setup.sh. Then build and run the Buildroot distro as normal. After the FVP is up and
running, on the terminal_uart_ap run:

./scmi_test_agent

The test log will be generated with file name arm_scmi_test_log.txt.

The random test failures on test cases 409, 413 and 517 is known issue.

Note: This test is specific to Buildroot only. And the manifest file tc3_a14.xml is used when checkout the code.
An example of the expected test result for this test is illustrated in the related Total Compute Platform Expected Test
Results document section.

20 Chapter 1. Total Compute: TC23.1

Total Compute

TF-A

This test is supported in Buildroot only. After build Buildroot, run commands:

export TFTF_TESTS=true
./run_docker.sh build-tftf-tests.sh all with_reqs

Then run Buildroot as normal. The test results is on terminal_uart_ap.

Note: This test is specific to Buildroot only. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

TF-M

After build the selected system distro, run commands:

export RSE_TESTS=true
./run_docker.sh build-rse.sh all with_reqs

Then run the selected system distro as normal. The test results is on terminal_s1.

Note: It is expected that the boot will not complete after the rse tests are run.

Note: An example of the expected test result for this test is illustrated in the related Total Compute Platform Expected
Test Results document section.

Validate the TensorFlow Lite ML flow

A typical Machine Learning (ML) inference flow can be validated using the TensorFlow Lite’s model benchmarking
application.

This application can consume any TensorFlow Lite neural network model file and run a user specified number of
inferences on it, allowing to benchmark performance for the whole graph and for individual operators.

More information on the Model Benchmark tool can be found here.

Prerequisites

For this test, the following files will be required:

• benchmark_model binary: this file is part of the TC build and is automatically built;

• <any model>.tflite model: there is no requirement for a specific model file as long as it is specified in
a valid .tflite format; for the simplicity of just running a sanity test, two models are provided with the
build.

• armNN folder: this folder contains the files libarmnn.so, libarmnnDelegate.so, and
Arm_CpuRef_backend.so; these libraries are required by TensorFlow Lite to use ArmNN as one
of its backends to delegate work.

1.4. User Guide 21

https://github.com/tensorflow/tensorflow/blob/v2.15.0/tensorflow/lite/tools/benchmark/README.md

Total Compute

For Buildroot distro, the binaries are automatically integrated into the buildroot distro filesystem (being located at
/opt/arm/ml).

For Android and Debian distro, the benchmark_model and armNN binaries have to be manually uploaded to the running
TC FVP model before the test can be executed. See sections Manually uploading a TensorFlow Lite ML model for
Buildroot or application for Debian distro, and Manually uploading a TensorFlow Lite ML model, Arm Neural Network
and application for Android below for more details.

Manually uploading a TensorFlow Lite ML model for Buildroot or application for Debian distro

For Buildroot distro, the application and “Mobile Object Localizer” model are automatically integrated into the build-
root distro filesystem. However, there may be situations where the developer wishes to use their own TensorFlow Lite
model.

For Debian distro, the application and a model have to be manually uploaded to the running TC FVP model.

This section describes the steps necessary to manually upload a model to the running TC FVP model.

To the purpose of demonstrating this process, an old MobileNet Graph model version will be taken as example (the
model can be downloaded from here). To upload and run the benchmark_model application and profile the “MobileNet
Graph” model, please proceed as described:

• start by downloading and decompressing the MobileNet graph model to your local host machine using the fol-
lowing command:

any host path location can be used (as long it has writable permissions)
mkdir MobileNetGraphTFModel && cd MobileNetGraphTFModel
wget https://storage.googleapis.com/download.tensorflow.org/models/tflite/
→˓mobilenet_v1_224_android_quant_2017_11_08.zip
unzip mobilenet_v1_224_android_quant_2017_11_08.zip

• upload the MobileNet Graph model to the TC FVP model using the following command:

the following command assumes that the port 8022 is being used as␣
→˓specified in the run_model.sh script
scp -P 8022 mobilenet_quant_v1_224.tflite root@localhost:/opt/arm/ml/
password (if required): root

• upload the benchmark_model application to the TC FVP model using the following command:

the following command assumes that the port 8022 is being used as␣
→˓specified in the run_model.sh script
scp -P 8022 benchmark_model root@localhost:/opt/arm/ml/
password (if required): root

• once the model has been uploaded to the remote TC FVP model, the benchmark_model can be run as described
in the Running the provided TensorFlow Lite ML model examples section.

Note: For Debian distro, the directory /opt/arm/ml should be created manually from uart_ap terminal. Also, the
benchmark_model application is located in host directory <TC_OUTPUT>/deploy.

22 Chapter 1. Total Compute: TC23.1

https://storage.googleapis.com/download.tensorflow.org/models/tflite/mobilenet_v1_224_android_quant_2017_11_08.zip

Total Compute

Manually uploading a TensorFlow Lite ML model, Arm Neural Network and application for Android

The benchmark_model application, “Arm Neural Network” backend support library and “Mobile Object Localizer”
TensorFlow Lite model are not automatically integrated into the Android filesystem.

This section describes the steps necessary to manually upload these required files to the TC FVP running Android
instance, and execute the test.

• start by moving to the build folder and upload the MobileNet Graph model and benchmark_model application
by the following command:

cd <TC_OUTPUT>/deploy/
adb connect localhost:5555
adb push benchmark_model /data/local/tmp
adb push mobile_object_localizer_v1.tflite /data/local/tmp
adb push armNN /data/local/tmp

• once the model has been uploaded to the remote TC FVP model, the benchmark_model can be run as described
in the next Running the provided TensorFlow Lite ML model examples section.

Running the provided TensorFlow Lite ML model examples

The following command describes how to run the benchmark_model application to profile the “Mobile Object Local-
izer” TensorFlow Lite model, which is one of the provided TensorFlow Lite ML model examples.

Although the command arguments are expected to greatly vary according to different use cases and models, this example
provides the typical command usage skeleton for most of the models.

To run the benchmark_model to profile the “Mobile Object Localizer” model, please follow the following steps:

• using terminal_uart_ap, login to the device/FVP model running TC and run the following commands:

the following command ensures correct path location to load the provided␣
→˓example ML models
For Buildroot and Debian distro
cd /opt/arm/ml
For Android
cd /data/local/tmp
With XNNPack for CPU path
./benchmark_model --graph=mobile_object_localizer_v1.tflite \

--num_threads=4 --num_runs=1 --min_secs=0.01 --use_xnnpack=true
With ArmNN for GPU path (Only available for Android)
LD_LIBRARY_PATH=/vendor/lib64/egl:armNN/ \
./benchmark_model \

--graph=mobile_object_localizer_v1.tflite \
--num_threads=4 \
--num_runs=1 \
--min_secs=0.01 \
--external_delegate_path="armNN/libarmnnDelegate.so" \
--external_delegate_options="backends:GpuAcc;logging-severity:info"

The benchmark model application will run profiling the Mobile Object Localizer model and after a few seconds, some
statistics and execution info will be presented on the terminal.

1.4. User Guide 23

Total Compute

OP-TEE

For OP-TEE, the TEE sanity test suite can be run using command xtest on the terminal_uart_ap.

Please be aware that this test suite will take some time to run all its related tests.

Note: This test is specific to Buildroot only. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

Trusted Services and Client application

For Trusted Services, please run the command ts-service-test -g FwuServiceTests -g
ItsServiceTests -g CryptoKeyDerivationServicePackedcTests -g CryptoMacServicePackedcTests
-g CryptoCipherServicePackedcTests -g CryptoHashServicePackedcTests -g
CryptoServicePackedcTests -g CryptoServiceProtobufTests -g CryptoServiceLimitTests -v
for Service API level tests, and run ts-demo for the demonstration of the client application.

Note: This test is specific to Buildroot only. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Results document section.

Trusty

On the Android distribution, Trusty provides a Trusted Execution Environment (TEE). The functionality of Trusty IPC
can be tested using the command tipc-test -t ta2ta-ipc with root privilege (once Android boots to prompt, run
su 0 for root access).

Note: This test is specific to Android only. An example of the expected test result for this test is illustrated in the Total
Compute Platform Expected Test Results document section.

Microdroid

On the Android distribution, Virtualization service provides support to run Microdroid based pVM (Protected VM).
In TC, it supports running both simple Microdroid demo and real Microdroid instance.

Prerequisites

Boot TC FVP with Android distribution to completely up. Leave it for some time (about 30 minutes) after homescreen
is rendered for adbd service to work. From one host terminal, run the following commands:

export TC_ANDROID_VERSION=android14
export ANDROID_PRODUCT_OUT=<TC_WORKSPACE>/src/android/out/target/product/tc_fvp/

Note: The document below is for Android 14. android13 can be used to run the test on Android 13. There are
different behaviours for Android 13. The differences will be explained end of this chapter.

24 Chapter 1. Total Compute: TC23.1

Total Compute

Run Microdroid demo

On the same host terminal, run command:

./run-scripts/run_microdroid_demo.sh run-tc-app

Note: An example of the expected test result for this test is illustrated in the related Total Compute Platform Expected
Test Results document section.

Run Microdroid instance

On the same host terminal, run command:

./run-scripts/run_microdroid_demo.sh start-microdroid

The terminal will be pending and waiting for ADB connection to it.

Connect to Microdroid instance with ADB

There are two options using ADB to connect to Microdroid instance.

• If there is only one Microdroid instance to be run, connect to it when it starts running. Run the command:

./run-scripts/run_microdroid_demo.sh start-microdroid --auto-connect

• If there is more than one Microdroid instance to be run, start the Microdroid instances firstly, then connect to
them from another host terminal. Run the command:

./run_microdroid_demo.sh vm-connect <CID>

The CID for the Microdroid instance is shown when the instance starts running. Also the script will prompt the user to
select between the running instances.

Note: This test is specific to Android only. The ADB connection uses the default ADB port 5555. If ADB connect
failed, check the ADB port in use and make change to the script manually.

Note: There are two differences for Android 13. When using the run-tc-app command, the test is not ex-
pected to terminate immediately. This allows you to access the shell from another terminal; To access the VM
shell for Microdroid, the build type must be userdebug when building Android. Accessing the VM shell with
an eng build (the default build option) is not possible. To enable userdebug mode, use the command export
TC_ANDROID_BUILD_TYPE=userdebug before building Android.

1.4. User Guide 25

Total Compute

Kernel Selftest

Tests are located at /usr/bin/selftest on the device.

To run all the tests in one go, use ./run_kselftest.sh script. Tests can also be run individually.

./run_kselftest.sh --summary

Warning: KSM driver is not a part of the TC3 kernel. Hence, one of the MTE Kselftests will fail for the
check_ksm_options test.

Note: This test is specific to Buildroot only. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

Rotational Scheduler

Rotating scheduler is a vendor module in the Linux kernel that will allow to use the CPUs optimally on an asymmetric
platform. Typically, on an asymmetric platform, tasks running on big CPUs will finish sooner. The resulting scheduling
pattern is not optimal, little/medium CPUs are unused once the big CPUs finish their task, as the tasks running on
little/medium CPUs are migrated to big CPU and little/medium CPUs will be in a idle state.

The rotating scheduler:

• Starts when one CPU reaches the Rotate state.

• Ends when there are no CPU in the Rotate state anymore.

Rotating scheduler will

• rotate task between CPUs to have all the tasks finishing approximately at the same time.

• no idle time from any CPU.

There are sysfs interface to configure rotating scheduler:

• Enable

Enable/disable the rotating scheduler.

• Max_latency_us

Keep track of the amount of work each rotating task has achieved. At any time, if the task the most ahead finishes,
all the rotating tasks should finish within the next max_latency_us.

• Min_residency_us

Tasks are guaranteed a minimum residency time after a rotation. This prevents from having tasks constantly
switching on a CPU. Min_residency_us is stronger than max_latency_us, meaning that min_residency_us is
strictly respected and max_latency_us is a soft target.

To run the test, on the terminal_uart_ap run:

test_rotational_scheduler.sh

26 Chapter 1. Total Compute: TC23.1

Total Compute

Note: This test is specific to Buildroot only. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

MPAM

The hardware and the software requirements required for the MPAM feature can be verified by running the command
testing_mpam.sh on terminal_uart_ap (this script is located inside the /bin folder, which is part of the default
$PATH environment variable, allowing this command to be executed from any location in the device filesystem).

Note: This test is specific to Buildroot only. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

MPMM

The functionality of the MPMM module in the SCP firmware can be leveraged to:

• set the proper gear for each core based on the workload. This functionality can be verified by checking the
INFO level SCP logs while executing the vector_workload test application on the terminal_uart_ap
window as follows:

vector_workload

• enforce the maximum clock frequency for a group of cores of the same type, based on the current gear
set for each core in that group. This functionality can be exercised by running the provided shell script
test_mpmm.sh which will run vector_workload on the different cores. This test ensures that the maxi-
mum clock frequency for a group of cores of the same type does not exceed the values set in Perf Constraint
Lookup Table (PCT) of the MPMM module in the SCP firmware.

To run this test, please run the following command in the terminal_uart_ap window:

test_mpmm.sh tc3 fvp

Note: These tests are specific to Buildroot only. An example of the expected test result for the second test is illustrated
in the related Total Compute Platform Expected Test Results document section.

BTI

On the terminal_uart_ap run:

su
cd /data/nativetest64/bti-unit-tests/
./bti-unit-tests

Note: This test is specific to Android builds. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

1.4. User Guide 27

Total Compute

MTE

On the terminal_uart_ap run:

su
cd /data/nativetest64/mte-unit-tests/
./mte-unit-tests

Note: This test is specific to Android builds. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

PAUTH

On the terminal_uart_ap run:

su
cd /data/nativetest64/pauth-unit-tests/
./pauth-unit-tests

Note: This test is specific to Android builds. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

EAS with LISA

This test requires Lisa to be installed. Please refer to the LISA documentation to get more information about the
requirements, dependencies and installation process of LISA on your system.

To setup Lisa, please run the following commands:

git clone --depth=1 --branch=v3.1.0 https://github.com/ARM-software/lisa.git
cd lisa
sudo ./install_base.sh --install-all

The following commands should be run each time LISA is run:

source init_env

For FVP with buildroot, boot the FVP model to buildroot as you normally would, making sure user networking is
enabled (include -n user option):

exekall run lisa.tests.scheduler.eas_behaviour --conf <path to target_conf_linux.yml>

The following excerpt illustrates the contents of the target_conf_linux.yml file:

target-conf:
kind: linux
name: tc
host: localhost
port: 8022

(continues on next page)

28 Chapter 1. Total Compute: TC23.1

https://lisa-linux-integrated-system-analysis.readthedocs.io/en/master/setup.html#installation

Total Compute

(continued from previous page)

username: root
password: ""
strict-host-check: false

kernel:
src: <TC_OUTPUT>/tmp_build/linux

modules:
make-variables:
CC: clang

build-env: alpine

wait-boot:
enable: false

devlib:
file-xfer: scp
max-async: 1

An intermittent failure on test case TwoBigThreeSmall[board=tc]:test_task_placement is known issue.

Note: This test is specific to Buildroot only. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

pKVM SMMUv3 driver support validation

The SMMUv3 driver support can be validated by checking the bootlog messages or by running the following presented
command. This section describes and educates what output to expect for both situations where the driver is loaded and
enabled, or when it fails or is disabled.

On the terminal_uart_ap run:

realpath /sys/bus/platform/devices/3f000000.iommu/driver

When the pKVM driver is loaded and enabled with success, the previous command should report an output similar
to the following one:

$ realpath /sys/bus/platform/devices/3f000000.iommu/driver
/sys/bus/platform/drivers/kvm-arm-smmu-v3

If the pKVM driver fails to load or is disabled, the previous command should report an output similar to the following
one:

$ realpath /sys/bus/platform/devices/3f000000.iommu/driver
/sys/bus/platform/drivers/arm-smmu-v3

More information about the pKVM driver loading, initialisation phase and it being used by a device driver can be
checked during the bootlog messages or by running the command dmesg, which should contain entries similar to the
following:

1.4. User Guide 29

Total Compute

(...)
[0.033341][T1] iommu: Default domain type: Translated
[0.033349][T1] iommu: DMA domain TLB invalidation policy: strict mode
(...)
[0.059858][T1] kvm [1]: IPA Size Limit: 40 bits
[0.068132][T1] kvm-arm-smmu-v3 4002a00000.iommu: ias 40-bit, oas 40-bit␣
→˓(features 0x0000dfef)
[0.068562][T1] kvm-arm-smmu-v3 4002a00000.iommu: allocated 65536 entries for cmdq
[0.068574][T1] kvm-arm-smmu-v3 4002a00000.iommu: 2-level strtab only covers 23/
→˓32 bits of SID
[0.070775][T1] kvm-arm-smmu-v3 3f000000.iommu: ias 40-bit, oas 40-bit (features␣
→˓0x0000dfef)
[0.071061][T1] kvm-arm-smmu-v3 3f000000.iommu: allocated 65536 entries for cmdq
[0.071071][T1] kvm-arm-smmu-v3 3f000000.iommu: 2-level strtab only covers 23/32␣
→˓bits of SID
[0.086915][T69] Freeing initrd memory: 1428K
[0.094720][T1] kvm [1]: GICv4 support disabled
[0.094727][T1] kvm [1]: GICv3: no GICV resource entry
[0.094734][T1] kvm [1]: disabling GICv2 emulation
[0.094742][T1] kvm [1]: GIC system register CPU interface enabled
[0.094803][T1] kvm [1]: vgic interrupt IRQ18
[0.095008][T1] kvm [1]: Protected nVHE mode initialized successfully
(...)
[0.196354][T69] komeda 4000000000.display: Adding to iommu group 0
(...)
[3.792147][T69] mali 2d000000.gpu: Adding to iommu group 1
(...)

Considering the previous output excerpt, the last line confirms that the system is using pKVM instead of the classic
KVM driver.

Note: This test is applicable to all TC build distro variants.

CPU hardware capabilities

The Buildroot build variant provides a script that allows to validate the advertisement for the FEAT_AFP, FEAT_ECV
and FEAT_WFxT CPU hardware capabilities.

On the terminal_uart_ap run:

test_feats_arch.sh

Note: This test is specific to Buildroot only. An example of the expected test result for this test is illustrated in the
related Total Compute Platform Expected Test Results document section.

30 Chapter 1. Total Compute: TC23.1

Total Compute

GPU Integration

When Android is built with the Mali DDK (hardware rendering) based on DDK source code, it supports integration
tests for GLES, Vulkan and EGL. These are built by default as part of the DDK and can be run from the Android
command line (aka terminal_uart_ap) once the system has booted.

The following subsection includes the common steps and commands required to run any of the GPU integration test
suites.

Initial Setup

Android enforces linker namespaces based on file paths and therefore the files must be copied to an unrestricted names-
pace. On the terminal_uart_ap run:

su
mkdir -p /data/nativetest/unrestricted
cp /data/nativetest64/vendor/mali_tests64/* /data/nativetest/unrestricted/
cd /data/nativetest/unrestricted

To prevent potential failures during the start of tests, specify the following environment variable:

export LD_PRELOAD=/vendor/lib64/egl/libGLES_mali.so

Running GLES integration tests

On the terminal_uart_ap run:

./mali_gles_integration_suite

Note: An example of the expected test result for this test is illustrated in the related Total Compute Platform Expected
Test Results document section.

Running EGL integration tests

On the terminal_uart_ap run:

./mali_egl_integration_tests

Note: An example of the expected test result for this test is illustrated in the related Total Compute Platform Expected
Test Results document section.

Warning: Please note that, the EGL test takes considerable time to finish (approx. 2 days).

1.4. User Guide 31

Total Compute

Running Vulkan integration tests

On the terminal_uart_ap run:

./mali_vulkan_integration_suite

Warning: When running the full Vulkan Integration test suite, the test
vulkan_wsi_external_memory_dma_buf_32k_image is expected to fail at some point (please refer to
the Total Compute Platform Expected Test Results for more details). To avoid facing this error or having the GPU
Integration test fail, the user is highly suggested to run the tests individually.

Warning: Please note that, depending on the unitary test selection but especially considering the full Vulkan
test suite, the test execution time may take quite considerable time to run (approx. 2 weeks considering the worst
scenario for the full test suite).

1.4.8 Debugging on Arm Development Studio

This section describes the steps to debug the TC software stack using Arm Development Studio.

Attach and Debug

1. Build the target with debug enabled (the file <TC_WORKSPACE>/build-scripts/config can be configured to
enable debug);

2. Run the distro as described in the section Running the software on FVP with the extra parameters -- -I
to attach to the debugger. The full command should look like the following:

./run-scripts/tc3/run_model.sh -m <model binary path> -d <distro> -- -I

3. Import the model Add a new model... -> Select Model Interface -> Select Model Connection
Method -> Model Running on Local Host. Change the unrecognised CPU type to A-Generic.

4. After connection, use options in debug control console (highlighted in the below diagram) or the keyboard short-
cuts to step, run or halt.

5. To add debug symbols, right click on target -> Debug configurations and under files tab add path to elf
files.

6. Debug options such as break points, variable watch, memory view and so on can be used.

Note: This configuration requires Arm DS version 2023.b or later.

32 Chapter 1. Total Compute: TC23.1

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio

Total Compute

Switch between SCP and AP

1. Right click on target and select Debug Configurations;

2. Under Connection, select Cortex-M85 for SCP or any of the remaining targets to attach to a specific AP;

3. Press the Debug button to confirm and start your debug session.

Enable LLVM parser (for Dwarf5 support)

To enable LLVM parser (with Dwarf5 support), please follow the next steps:

1. Select Window->Preferences->Arm DS->Debugger->Dwarf Parser;

2. Tick the Use LLVM DWARF parser option;

3. Click the Apply and Close button.

Arm DS version

The previous steps apply to the following Arm DS Platinum version/build:

Note: Arm DS Platinum is only available to licensee partners. Please contact Arm to have access (support@arm.com).

1.4. User Guide 33

mailto:support@arm.com

Total Compute

34 Chapter 1. Total Compute: TC23.1

Total Compute

1.4. User Guide 35

Total Compute

36 Chapter 1. Total Compute: TC23.1

Total Compute

1.4.9 Feature Guide

Firmware Update

Currently, the firmware update functionality is only supported with the buildroot distro.

Creating Capsule

Firmware Update in the total compute platform uses the capsule update mechanism. Hence, the Firmware Image
Package (FIP) binary has to be converted to a capsule. This can be done with GenerateCapsule which is present in
BaseTools/BinWrappers/PosixLike of the edk2 project. Clone the edk2 project with the command:

git clone --depth 1 --branch edk2-stable202405 https://github.com/tianocore/edk2.git

To generate the capsule from the fip binary, run the following command:

./GenerateCapsule -e -o efi_capsule \
--fw-version 1 \
--lsv 0 \
--guid 0d5c011f-0776-5b38-8e81-36fbdf6743e2 \
--update-image-index 0 \
--verbose <path to file>/fip-tc.bin

Command argument’s explanation:

• fip-tc.bin is the input fip file that has the firmware binaries of the total compute platform;

• efi_capsule is the name of capsule to be generated;

• 0d5c011f-0776-5b38-8e81-36fbdf6743e2 is the image type UUID for the FIP image.

Loading Capsule

The capsule generated using the above steps has to be loaded into memory during the execution of the model by
providing the below FVP arguments:

--data board.dram=<location of capsule>/efi_capsule@0x2000000

This will load the capsule to be updated at address 0x82000000.

The final command to run the model for buildroot should look like the following:

./run-scripts/tc3/run_model.sh -m <model binary path> -d buildroot \
-- \
--data board.dram=<location of capsule>/efi_capsule@0x2000000

1.4. User Guide 37

https://github.com/tianocore/edk2

Total Compute

Updating Firmware

During the normal boot of the platform, stop at the U-Boot prompt and execute the following command:

TOTAL_COMPUTE# efidebug capsule update -v 0x82000000

This will update the firmware. After it is completed, reboot the platform using the reset command:

TOTAL_COMPUTE# reset

Note: The new Firmware Update solution is compatible with the latest TF-A and aligns with the PSA Firmware update
spec.

AutoFDO in Android

Feedback Directed Optimization (FDO), also known as Profile Guided Optimization (PGO), uses the profile of a pro-
gram’s execution to guide the optimizations performed by the compiler.

More information about the AutoFDO process in ARM can be found here.

Prerequisites

To make use of this feature, the following requisites should be observed:

• the application must be compiled to include sufficient debug information to map instructions back to source lines.
For clang/llvm, this translates into adding the -fdebug-info-for-profiling and -gline-tables-only
compiler options;

• simpleperf will identify the active program or library using the build identifier stored in the elf file. This
requires the use of the following compiler flag -Wl,--build-id=sha1 to be added during link time.

• download Android NDK from Android NDK downloads page and extract its contents.

The following example demonstrates how to compile a sample C program named program.c using clang from An-
droid NDK:

<ndk-path>/toolchains/llvm/prebuilt/linux-x86_64/bin/clang --target=aarch64-linux-
→˓android34 --sysroot=<ndk-path>/toolchains/llvm/prebuilt/linux-x86_64/sysroot -fdebug-
→˓info-for-profiling -gline-tables-only -Wl,--build-id=sha1 -Wl,--no-rosegment program.c␣
→˓-o program

Steps to use AutoFDO

The following steps describe how to upload the resulting program binary object to the fvp-model, how to generate and
convert the execution trace into source level profiles, and how to download and reuse that to optimize the next compiler
builds:

1. connect to the fvp-model running instance;

Please refer to the ADB - Connect to the running FVP-model instance section for more info how to do
this.

2. upload the previous resulting program binary object to the remote /vendor/bin path location;

38 Chapter 1. Total Compute: TC23.1

https://github.com/Linaro/OpenCSD/blob/master/decoder/tests/auto-fdo/autofdo.md
https://developer.android.com/ndk/downloads

Total Compute

Please refer to the ADB - Upload a file section for more info how to do this.

3. using the terminal_uart_ap window, navigate into /storage/self path location and elevate your privilege
level to root (required and crucial for next steps). This can be achieved by running the following commands on
the specified terminal window:

cd /storage/self
su
chmod a+x /vendor/bin/program

4. record the execution trace of the program;

The simpleperf application in Android is used to record the execution trace of the application.
This trace will be captured by collecting the cs_etm event from simpleperf and will be stored in a
perf.data file.

The following command demonstrates how to make use of the simpleperf application to record the
execution trace of the program application (this command is intended to be run on the fvp-model via
the terminal_uart_ap window):

simpleperf record -e cs-etm program

More info on the simpleperf tool can be found here.

5. convert the execution trace to instruction samples with branch histories;

The execution trace can be converted to an instruction profile using the simpleperf application.
The following simpleperf inject command will decode the execution trace and generate branch
histories in text format accepted by AutoFDO (this command is intended to be run on the fvp-model
via the terminal_uart_ap window):

simpleperf inject -i perf.data -o inj.data --output autofdo --binary program

6. convert the instruction samples to source level profiles;

The AutoFDO tool is used to convert the instruction profiles to source profiles for the GCC and
clang/llvm compilers. It can be installed in the host machine with the following command:

sudo apt-get install autofdo

The conversion of the instruction samples to source level profiles requires to pull the instruction profile
(generated in the previous step and saved as inj.data file), from the model to the host machine using
the adb command (please refer to the ADB - Download a file section for more info how to do this).

The instruction samples produced by simpleperf inject will be passed to the AutoFDO tool to
generate source level profiles for the compiler. The following line demonstrates the usage command
for clang/llvm (this command is intended to be run on the host machine):

create_llvm_prof --binary program --profile inj.data --profiler text --out␣
→˓program.llvmprof --format text

7. use the source level profile with the compiler;

The profile produced by the above steps can now be provided to the compiler to optimize the next
build of the program application. For clang, use the -fprofile-sample-use compiler option as
follows (this command is intended to be run on the host machine):

<ndk-path>/toolchains/llvm/prebuilt/linux-x86_64/bin/clang --target=aarch64-
→˓linux-android34 --sysroot=<ndk-path>/toolchains/llvm/prebuilt/linux-x86_
→˓64/sysroot -O2 -fprofile-sample-use=program.llvmprof -o program program.c(continues on next page)

1.4. User Guide 39

https://developer.android.com/ndk/guides/simpleperf
https://github.com/google/autofdo

Total Compute

(continued from previous page)

ADB connection on Android

This section applies to Android distros and describes the steps required to use ADB protocol to perform the
following actions (always considering a remote running FVP-model Android instance):

• connect to a running fvp-model instance;

• upload a file;

• download a file;

• execute a command via ADB shell.

Connect to the running FVP-model instance

1. run the fvp-model and wait for the instance to fully boot up (this may take a considerable amount of time de-
pending on the distro under test and the host hardware specification);

2. once the Android distro boot completes (and the Fast Models - Total Compute 3 DP0 window shows the
complete Android home screen), run the following commands on a new host terminal session to connect to the
fvp-model running instance via the adb protocol:

adb connect 127.0.0.1:5555
adb devices

The following excerpt capture demonstrates the execution and expected output from the previous com-
mands:

adb connect 127.0.0.1:5555
* daemon not running; starting now at tcp:5037
* daemon started successfully
connected to 127.0.0.1:5555
adb devices
List of devices attached
127.0.0.1:5555 offline

Note: If the previous command fails to connect, please wait a few more minutes and retry. Due to the indeterministic
services boot flow nature, this may circumvent situations where the fvp-model Android instance takes a bit longer to
start all the required services and correctly allow communications to happen.

Warning: If running more than one FVP-model on the same host, each instance will get a different ADB port
assigned. The assigned ADB port is mentioned during the FVP-model start up phase. Please ensure you are using
the correct assigned/mentioned ADB port and adapt the commands mentioned in this entire section as needed (i.e.
replacing default port 5555 or <fvp adb port> mentions with the correct port being used).

40 Chapter 1. Total Compute: TC23.1

Total Compute

Upload a file

1. connect or ensure that an ADB connection to the fvp-model is established;

2. run the following command to upload a local file to the remote fvp-model Android running instance:

adb -s <fvp adb port> push <local host location for original file> <remote␣
→˓absolute path location to save file>

Note: It may happen that the ADB connection is lost between the connection moment and the moment that the previous
command is run. If that happens, please repeat the connection step and the previous command.

Download a file

1. connect or ensure that an ADB connection to the fvp-model is established;

2. run the following command to download a remote file to your local host system:

adb -s <fvp adb port> pull <remote absolute path location for original file>
→˓<local host location where to save file>

Note: It may happen that the ADB connection is lost between the connection moment and the moment that the previous
command is run. If that happens, please repeat the connection step and the previous command.

Execute a remote command

adb -s <fvp adb port> shell <command>

Example:

adb -s <fvp adb port> shell ls -la

There is a script adb_verify.sh under TC directory build-scripts/unit_test. It can be used to test all adb
commands on TC Android.

Note: It may happen that the ADB connection is lost between the connection moment and the moment that the previous
command is run. If that happens, please repeat the connection step and the previous command.

1.4. User Guide 41

Total Compute

Set up TAP interface for Android ADB

This section applies to Android and details the steps required to set up the tap interface on the host for model networking
for ADB.

The following method relies on libvirt handling the network bridge. This solution provides a safer approach in
which, in cases where a bad configuration is used, the primary network interface should continue operational.

Steps to set up the tap interface

To set up the tap interface, please follow the next steps (unless otherwise mentioned, all commands are intended to be
run on the host system):

1. install libvirt on your development host system:

sudo apt-get update && sudo apt-get install libvirt-daemon-system libvirt-
→˓clients

The host system should now list a new interface with a name similar to virbr0 and an IP address of
192.168.122.1. This can be verified by running the command ifconfig -a (or alternatively ip
a s for newer distributions) which will produce an output similar to the following:

$ ifconfig -a
virbr0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 192.168.122.1 netmask 255.255.255.0 broadcast 192.168.122.255
ether XX:XX:XX:XX:XX:XX txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

virbr0-nic: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether XX:XX:XX:XX:XX:XX txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
$

2. create the tap0 interface:

sudo ip tuntap add dev tap0 mode tap user $(whoami)
sudo ifconfig tap0 0.0.0.0 promisc up
sudo brctl addif virbr0 tap0

3. download and install the Android SDK from here or, alternatively, install the adb tool package as follows:

sudo apt-get install adb

4. run the FVP model providing the additional parameter -t "tap0" to enable the tap interface:

./run-scripts/tc3/run_model.sh -m <model binary path> -d android -t "tap0"

Before proceeding, please allow Android FVP model to fully boot and the Android home screen
display to be visible on the Fast Models - Total Compute 3 DP0 window.

42 Chapter 1. Total Compute: TC23.1

https://developer.android.com/studio

Total Compute

Note: Running and booting the Android FVP model will take considerable time, potentially taking
easily 2-3+ hours depending on your host system hardware specification. Please grab a coffee and
relax.

5. once the Android FVP model boots, the Android instance should get an IP address similar to 192.168.122.62,
as illustrated in the next figure:

6. validate the connection between the host tap0 interface and the Android FVP model by running the following
command on the fvp-model via the terminal_uart_ap window:

ping 192.168.122.1

Alternatively, it is also possible to validate if the fvp-model can reach a valid internet gateway by
pinging, for instance, the IP address 8.8.8.8 instead.

7. at this stage, you should also be able to establish an ADB connection with the IP address and upload/download
files as described in section ADB connection on Android.

1.4. User Guide 43

Total Compute

Steps to graceful disable and remove the tap interface

To revert the configuration of your host system (removing the tap0 interface), please follow the next steps:

1. remove the tap0 from the bridge configuration:

sudo brctl delif virbr0 tap0

2. disable the bridge interface:

sudo ip link set virbr0 down

3. remove the bridge interface:

sudo brctl delbr virbr0

4. remove the libvirt package:

sudo apt-get remove libvirt-daemon-system libvirt-clients

Running and Collecting FVP tracing information

This section describes how to run the FVP-model, enabling the output of trace information for debug and troubleshoot-
ing purposes. To illustrate proper trace output information that can be obtained at different stages, the following com-
mand examples will use the SMMU-Yeats block component. However, any of the commands mentioned, can be ex-
tended or adapted easily for any other component.

Note: This functionality requires to execute the FVP-model enforcing the additional load of the GenericTrace.so
or ListTraceSources.so plugins (which are provided and part of your FVP bundle).

Getting the list of trace sources

To get the list of trace sources available on the FVP-model, please run the following command:

<fvp-model binary path>/FVP_TC3 \
--plugin <fvp-model plugin path/ListTraceSources.so> \
>& /tmp/trace-sources-fvp-tc3.txt

This will start the model and use the ListTraceSources.so plugin to dump the list to a file. Please note that the file
size can easily extend to tens of megabytes, as the list is quite extensive.

The following excerpt illustrates the output information related with the example component SMMU-Yeats:

Component (1556) providing trace: TC3.css.smmu (MMU_Yeats, 11.26.15)
===
Component is of type "MMU_Yeats"
Version is "11.26.15"
#Sources: 294

Source ArchMsg.Error.error (These messages are about activity occurring on the␣
→˓SMMU that is considered an error.

(continues on next page)

44 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

Messages will only come out here if parameter all_error_messages_through_trace␣
→˓is true.

DISPLAY %{output})
Field output type:MTI_STRING size:0 max_size:120 (The stream output)

Source ArchMsg.Error.fetch_from_memory_type_not_supporting_httu (A descriptor␣
→˓fetch from an HTTU-enabled translation regime to an unsupported
memory type was made. Whilst the fetch itself may succeed, if an update to
the descriptor was attempted then it would fail.)

Executing the FVP-model with traces enabled

To execute the FVP-model with trace information enabled, please run the following command:

./run-scripts/tc3/run_model.sh -m <model binary path> -d <distro> \
-- \
--plugin <fvp-model plugin path/GenericTrace.so> \
-C 'TRACE.GenericTrace.trace-sources="TC3.cpnss.smmu_rp0_tcu.*,TC3.css.

→˓smmu.*"' \
-C TRACE.GenericTrace.flush=true

Multiple trace sources can be requested by separating the trace-sources strings with commas, as exemplified on the
previous command listing.

By default, the trace information will be displayed to the standard output (e.g. display), which due to its verbosity may
not be always the ideal solution. For such situations, it is suggested to redirect and capture the trace information into a
file, which can be achieved by running the following command:

./run-scripts/tc3/run_model.sh -m <model binary path> -d <distro> \
-- \
--plugin <fvp-model plugin path/GenericTrace.so> \
-C 'TRACE.GenericTrace.trace-sources="TC3.cpnss.smmu_rp0_tcu.*,TC3.css.

→˓smmu.*"' \
-C TRACE.GenericTrace.flush=true \
>& /tmp/trace-fvp-tc3.txt

Warning: Please note that the trace information output can be very verbose depending on the component and
filtering options. This has the potential to produce a large amount of information, which in case of redirecting to a
file, can easily achieve file sizes of GB or TB magnitude in a short period of time.

The following output excerpt illustrates an example of the trace information captured for the DPU
(streamid=0x00000000) and GPU (streamid=0x00000200):

(...)
cpnss.smmu_rp0_tcu.start_ptw_read: trans_id=0x0000000000000079␣
→˓streamid=0x00000000 substreamid=0xffffffff ttb_grain_stage_and_
→˓level=0x00000202 pa_address=0x000000088ea5bfe0 input_
→˓address=0x00000000ff800000 ssd_ns=ssd_ns ns=bus-ns desckind=el2_or_st2_
→˓aarch64 inner_cache=rawaWB outer_cache=rawaWB aprot=DNP adomain=ish mpam_pmg_
→˓and_partid=0x00000000 ssd=ns pas=ns mecid=0xffffffff (continues on next page)

1.4. User Guide 45

Total Compute

(continued from previous page)

cpnss.smmu_rp0_tcu.verbose_commentary: output="Performing a Table Walk read␣
→˓as:-"
cpnss.smmu_rp0_tcu.verbose_commentary: output=" trans_id:121-st2-final-l2-
→˓aa64-ttb0-vmid:0-ns-sid:0"
cpnss.smmu_rp0_tcu.verbose_commentary: output="to ns-0x000000088ea5bfe0-PND-
→˓u0x5300000a-m0xffffffff-ish-osh-rawaC-rawaC of size 8B"
cpnss.smmu_rp0_tcu.verbose_commentary: output="Table Walk finished:-"
cpnss.smmu_rp0_tcu.verbose_commentary: output=" trans_id:121-st2-final-l2-
→˓aa64-ttb0-vmid:0-ns-sid:0"
cpnss.smmu_rp0_tcu.verbose_commentary: output="got:-"
cpnss.smmu_rp0_tcu.verbose_commentary: output=" 0x000000088ea5bfe0:␣
→˓0x000000088f2006d5"
cpnss.smmu_rp0_tcu.ptw_read: trans_id=0x0000000000000079 streamid=0x00000000␣
→˓substreamid=0xffffffff ttb_grain_stage_and_level=0x00000202 pa_
→˓address=0x000000088ea5bfe0 input_address=0x00000000ff800000 ssd_ns=ssd_ns␣
→˓ns=bus-ns desckind=el2_or_st2_aarch64 inner_cache=rawaWB outer_cache=rawaWB␣
→˓aprot=DNP adomain=ish abort=ok data=0x000000088f2006d5 ssd=ns pas=ns␣
→˓mecid=0xffffffff
cpnss.smmu_rp0_tcu.ptw_read_st2_leaf_descriptor: trans_id=0x0000000000000079␣
→˓streamid=0x00000000 substreamid=0xffffffff ttb_grain_stage_and_
→˓level=0x00000202 pa_address=0x000000088ea5bfe0 input_
→˓address=0x00000000ff800000 ssd_ns=ssd_ns ns=bus-ns desckind=el2_or_st2_
→˓aarch64 XN=N contiguous=N AF=Y SH10=sh10_osh DBM=N HAP21=hap21_read_write␣
→˓MemAttr3_0=memattr_oNC_iNC output_address=0x000000088f200000 nT=N s2hwu_
→˓pbha=0x00 NS=n/a AMEC=MEC not supported. ssd=ns pas=ns mecid=0xffffffff PIE_
→˓PIIndex=0xffff PIE_Dirty=n/a POE_POIndex=0xffff AssuredOnly=n/a
(...)
css.smmu.start_ptw_read: trans_id=0x0000000000000040 streamid=0x00000200␣
→˓substreamid=0xffffffff ttb_grain_stage_and_level=0x00000201 pa_
→˓address=0x0000000883794110 input_address=0x00000008899ad000 ssd_ns=ssd_ns␣
→˓ns=bus-ns desckind=el2_or_st2_aarch64 inner_cache=rawaWB outer_cache=rawaWB␣
→˓aprot=DNP adomain=ish mpam_pmg_and_partid=0x00000000 ssd=ns pas=ns␣
→˓mecid=0xffffffff
css.smmu.verbose_commentary: output="Performing a Table Walk read as:-"
css.smmu.verbose_commentary: output=" trans_id:64-st2-final-l1-aa64-ttb0-
→˓vmid:1-ns-sid:512"
css.smmu.verbose_commentary: output="to ns-0x0000000883794110-PND-u0x53000109-
→˓m0xffffffff-ish-osh-rawaC-rawaC of size 8B"
css.smmu.verbose_commentary: output="Table Walk finished:-"
css.smmu.verbose_commentary: output=" trans_id:64-st2-final-l1-aa64-ttb0-
→˓vmid:1-ns-sid:512"
css.smmu.verbose_commentary: output="got:-"
css.smmu.verbose_commentary: output=" 0x0000000883794110: 0x00000008899aa003
→˓"
css.smmu.ptw_read: trans_id=0x0000000000000040 streamid=0x00000200␣
→˓substreamid=0xffffffff ttb_grain_stage_and_level=0x00000201 pa_
→˓address=0x0000000883794110 input_address=0x00000008899ad000 ssd_ns=ssd_ns␣
→˓ns=bus-ns desckind=el2_or_st2_aarch64 inner_cache=rawaWB outer_cache=rawaWB␣
→˓aprot=DNP adomain=ish abort=ok data=0x00000008899aa003 ssd=ns pas=ns␣
→˓mecid=0xffffffff
css.smmu.ptw_read_st2_table_descriptor: trans_id=0x0000000000000040␣
→˓streamid=0x00000200 substreamid=0xffffffff ttb_grain_stage_and_
→˓level=0x00000201 pa_address=0x0000000883794110 input_
→˓address=0x00000008899ad000 ssd_ns=ssd_ns ns=bus-ns desckind=el2_or_st2_
→˓aarch64 APTable=aptable_no_effect XNTable=N PXNTable=N␣
→˓TableAddress=0x00000008899aa000 ssd=ns pas=ns mecid=0xffffffff AF=N/A

(continues on next page)

46 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

(...)

DICE/DPE

Verify DPE from U-boot

To verify DPE is working, run Android distro with AVB (the authentication option) enabled. Refer to the Build variants
configuration section for AVB.

It should build and run successfully. And on terminal_uart_ap, there is output:

PVMFW load addr 84000000 size 426 KiB
Loading PVMFW to f1973000, end f19df5bf ... OK

which shows that PVMFW image is verified and loaded successfully.

Verify DPE from Microdroid

On Android 14, with AVB enabled, the protected VM is supported. To verify this, run Microdroid with protected
option.

Refer to the Microdroid section on how to run Microdroid instance. Based on that, to use the protected option, run
the command:

for one Microdroid instance
./run-scripts/run_microdroid_demo.sh start-microdroid --auto-connect --protected

::
for more than one Microdroid instance # start the instance ./run-scripts/run_microdroid_demo.sh start-
microdroid –protected # from a new terminal, connect to the instance ./run_microdroid_demo.sh vm-connect
<CID>

It should run to Microdroid VM shell prompt. Which verifies that DPE is working.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.5 System profiling, Applications tracing and Trace analysis

This section provides information related with tools, methodologies and features present and supported in the current
Total Compute release, that allow to profile the performance and behaviour of the system and/or applications.

1.5. System profiling, Applications tracing and Trace analysis 47

Total Compute

1.5.1 Simpleperf

Simpleperf is a native CPU profiling tool for Android, which can be used to profile both Android applications and
native processes running on Android. Detailed documentation about this tool can be found on link.

The Linux Kernel exposes several Performance Monitoring Unit (PMU) - CPU and non-CPU - events, as well as
software and tracepoint events to user space via the perf_event_open system call, which is used by simpleperf to
collect and process the event’s data.

The following subsections do present some simpleperf command examples that can be used to obtain useful infor-
mation to troubleshoot and validate the development. Detailed information on the available commands supported, and
their usage can be obtained on link.

Note: Although not all, most of the following commands do require root privileges in order to retrieve some of the
system wide information. Failing to do so, will result in the following error message “System wide profiling needs root
privilege”. To obtain root privileges, simply run the command su 0 before running any of the following examples.

Simpleperf List

A list of the different supported events can be obtained by running the command simpleperf list. An example of
the output provided by the command is presented below for reference:

console:/ $ simpleperf list

List of hw-cache events:
More cache events are available in `simpleperf list raw`.
branch-load-misses
branch-loads
dTLB-load-misses
dTLB-loads
iTLB-load-misses
iTLB-loads
L1-dcache-load-misses
L1-dcache-loads
L1-icache-load-misses
L1-icache-loads
LLC-load-misses
LLC-loads

List of coresight etm events:
cs_etm/autofdo/
cs-etm # CoreSight ETM instruction tracing

List of hardware events:
branch-instructions
branch-misses
bus-cycles
cache-misses
cache-references
cpu-cycles
instructions
stalled-cycles-backend

(continues on next page)

48 Chapter 1. Total Compute: TC23.1

https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://android.googlesource.com/platform/system/extras/+/refs/heads/main/simpleperf/doc/executable_commands_reference.md

Total Compute

(continued from previous page)

stalled-cycles-frontend

List of pmu events:
arm_cspmu_0/cycles/
arm_cspmu_1/cycles/
arm_cspmu_2/cycles/
arm_cspmu_3/cycles/
arm_dsu_0/bus_access/
arm_dsu_0/bus_cycles/
arm_dsu_0/cycles/
arm_dsu_0/memory_error/
armv9_cortex_a520/br_immed_retired/
armv9_cortex_a520/br_mis_pred/
(...)
armv9_cortex_a520/trcextout3/
armv9_cortex_a520/ttbr_write_retired/
armv9_cortex_a725/br_immed_retired/
armv9_cortex_a725/br_mis_pred/
(...)
armv9_cortex_a725/ttbr_write_retired/
armv9_cortex_a725/unaligned_ldst_retired/
armv9_cortex_x925/br_immed_retired/
armv9_cortex_x925/br_mis_pred/
(...)
armv9_cortex_x925/ttbr_write_retired/
armv9_cortex_x925/unaligned_ldst_retired/

List of raw events provided by cpu pmu:
Please refer to "PMU common architectural and microarchitectural event numbers"
and "ARM recommendations for IMPLEMENTATION DEFINED event numbers" listed in
ARMv8 manual for details.
A possible link is https://developer.arm.com/docs/ddi0487/latest/arm-architecture-

→˓reference-manual-armv8-for-armv8-a-architecture-profile.
raw-ase-spec (may not supported) # Operation speculatively executed,␣

→˓Advanced SIMD instruction
raw-br-immed-retired (may not supported) # Instruction architecturally executed,␣

→˓immediate branch
raw-br-immed-spec (may not supported) # Branch speculatively executed,␣

→˓immediate branch
(...)
raw-unaligned-st-spec (may not supported) # Unaligned access, write
raw-vfp-spec (may not supported) # Operation speculatively executed,␣

→˓floating-point instruction

List of software events:
alignment-faults
context-switches
cpu-clock
cpu-migrations
emulation-faults
major-faults
minor-faults
page-faults

(continues on next page)

1.5. System profiling, Applications tracing and Trace analysis 49

Total Compute

(continued from previous page)

task-clock
(...)

Simpleperf Stat

The stat command can be used to get event counter values of the profiled processes. The command can be customised
to filter which events to use, which processes/threads to monitor, how to monitor and what print interval to adopt.

Some command examples are presented below.

Get system wide event counts for a specific duration and print at a specific interval

The following command allows to get the system wide default event counts, considering a duration of 1s and printing
counts every 50ms:

console:/ # simpleperf stat -a --duration 1 --interval 0.05

Performance counter statistics:

count event_name # count / runtime
1,562,624 cpu-cycles # 0.012290 GHz

0 stalled-cycles-frontend # 0.000 /sec
0 stalled-cycles-backend # 0.000 /sec

1,427,862 instructions # 1.094380 cycles per instruction
45,105 branch-instructions # 392.411 K/sec

0 branch-misses # 0.000000% miss rate
106.490720(ms) task-clock # 88.921592 cpus used

14 context-switches # 139.296 /sec
11 page-faults # 114.277 /sec

Total test time: 0.001198 seconds.
Performance counter statistics:

count event_name # count / runtime
3,394,688 cpu-cycles # 0.015067 GHz

0 stalled-cycles-frontend # 0.000 /sec
0 stalled-cycles-backend # 0.000 /sec

3,309,558 instructions # 1.025722 cycles per instruction
162,493 branch-instructions # 770.683 K/sec

0 branch-misses # 0.000000% miss rate
199.783110(ms) task-clock # 13.914760 cpus used

54 context-switches # 278.607 /sec
13 page-faults # 68.572 /sec

Total test time: 0.014358 seconds.
(...)

50 Chapter 1. Total Compute: TC23.1

Total Compute

Get event counts for a specific process within a duration

The following command allows to get the default event counts for the process system_server considering a duration
of 50ms:

console:/ # ps -A | grep system_server
system 477 318 19313020 338596 do_epoll_wait 0 S system_server
console:/ #
console:/ # simpleperf stat -p 477 --duration 0.05

Performance counter statistics:

count event_name # count / runtime
0 cpu-cycles #
0 stalled-cycles-frontend #
0 stalled-cycles-backend #
0 instructions #
0 branch-instructions #
0 branch-misses #

0.000000(ms) task-clock # 0.000000 cpus used
0 context-switches #
0 page-faults #

Total test time: 0.052116 seconds.
console:/sdcard #

Get specific events for a particular process

this example assumes the previous "system_server" process with PID 477
console:/ # simpleperf stat -e cpu-cycles -p 477 --duration 0.05
Performance counter statistics:

count event_name # count / runtime
6,351,580 cpu-cycles # 0.099210 GHz

Total test time: 0.050210 seconds.
console:/sdcard #

Additional examples:
console:/ # simpleperf stat -e cache-references,cache-misses -p 477 --duration 0.05
console:/ # simpleperf stat -e cache-references,cache-misses ls

Similarly to filtering events for a particular process using -p <PID> option, filtering events for specific threads can be
achieved by using -t <TID> argument.

1.5. System profiling, Applications tracing and Trace analysis 51

Total Compute

Get non-CPU PMU events

console:/ # simpleperf stat -a -e arm_dsu_0/cycles/ -- sleep 0.01
Performance counter statistics:

count event_name # count / runtime
9,223,372,036,854,775,809 arm_dsu_0/cycles/ # 469025720716.176 G/sec

Total test time: 0.019609 seconds.

console:/ # simpleperf stat -a -e arm_cspmu_0/cycles/ -- sleep 0.01
Performance counter statistics:

count event_name # count / runtime
9,223,372,036,854,775,809 arm_cspmu_0/cycles/ # 469169585366.791 G/sec

Total test time: 0.019612 seconds.
console:/sdcard #

Note: Non-CPU PMU events are not supported in per-process due to perf or simpleperf not being able to attach events
to a process.

Collect event counters using event-groups

console:/ # simpleperf stat --group cpu-cycles,instructions -- ls

acct debug_ramdisk lost+found second_stage_resources
apex dev mnt storage
bin etc odm sys
bugreports fstab.total_compute odm_dlkm system
cache init oem system_dlkm
config init.common.rc postinstall system_ext
d init.environ.rc proc vendor
data init.total_compute.rc product vendor_dlkm
data_mirror linkerconfig sdcard
Performance counter statistics:

count event_name # count / runtime
27,147,316 cpu-cycles # 2.603942 GHz
27,147,250 instructions # 1.000002 cycles per instruction

Total test time: 0.010935 seconds.
console:/sdcard #

52 Chapter 1. Total Compute: TC23.1

Total Compute

Simpleperf Record

The record command is used to dump samples of the profiled processes. The following example provides a very basic
usage scenario of the command:

console:/sdcard # pwd
/sdcard
console:/sdcard # simpleperf record ls
Alarms DCIM Movies Pictures Ringtones
Android Documents Music Podcasts TemporaryFile-t57Mnj
Audiobooks Download Notifications Recordings perf.data
simpleperf I cmd_record.cpp:798] Recorded for 0.0108992 seconds. Start post processing.
simpleperf I cmd_record.cpp:891] Samples recorded: 37. Samples lost: 0.
console:/sdcard #

Some additional command usage examples may include:

Record individual process for a specific duration:
console:/ # simpleperf record -p <PID> --duration <DURATION IN SECONDS>

Record set of processes for a specific duration:
console:/ # simpleperf record -p <PID1>,<PID2> --duration <DURATION IN SECONDS>

Spawn workload as a child process and record it:
console:/ # simpleperf record <WORKLOAD APPLICATION>

Frequency of the record can be set using -f or -c option, where
'-f 1000' means collecting 1000 records every second, and
'-c 1000' means collecting 1 record when 1000 events are hit.
console:/ # simpleperf record -f <FREQUENCY> -p <PID> --duration <DURATION IN SECONDS>
console:/ # simpleperf record -c <COUNT> -p <PID> --duration <DURATION IN SECONDS>

Simpleperf Report

The report command is used to report profiling data generated by the record command. The following example
assumes being executed following the previous simpleperf record ls command example:

this example assumes and follows the run of the previous "simpleperf record ls" example
console:/sdcard # simpleperf report
Cmdline: /system/bin/simpleperf record ls
Arch: arm64
Event: cpu-cycles (type 0, config 0)
Samples: 37
Event count: 25996499

Overhead Command Pid Tid Shared Object Symbol
38.72% ls 2145 2145 /system/lib64/libcrypto.so sha256_
→˓block_data_order
16.70% ls 2145 2145 [kernel.kallsyms] invoke_
→˓syscall
7.56% ls 2145 2145 [kernel.kallsyms] perf_
→˓output_end
6.67% ls 2145 2145 /apex/com.android.runtime/bin/linker64 ␣
→˓[linker]soinfo::lookup_version_info(VersionTracker const&, unsigned int, char const*,␣
→˓version_info const**)

(continues on next page)

1.5. System profiling, Applications tracing and Trace analysis 53

Total Compute

(continued from previous page)

5.23% ls 2145 2145 [kernel.kallsyms] vm_
→˓area_free
4.64% ls 2145 2145 /apex/com.android.runtime/bin/linker64 ␣
→˓[linker]ElfReader::ReadDynamicSection()
3.45% ls 2145 2145 [kernel.kallsyms] el0_da
3.20% ls 2145 2145 /apex/com.android.runtime/lib64/bionic/libc.so __
→˓aarch64_cas4_acq
3.16% ls 2145 2145 [kernel.kallsyms] mt_find
3.13% ls 2145 2145 [kernel.kallsyms] mas_wr_
→˓walk
2.97% ls 2145 2145 [kernel.kallsyms] mas_
→˓next_node
2.91% ls 2145 2145 [kernel.kallsyms] __rcu_
→˓read_unlock
1.56% ls 2145 2145 [kernel.kallsyms] mas_
→˓destroy
0.10% ls 2145 2145 [kernel.kallsyms] mas_
→˓walk
0.01% ls 2145 2145 [kernel.kallsyms] __pte_
→˓alloc
0.00% ls 2145 2145 [kernel.kallsyms] down_
→˓write_killable
0.00% ls 2145 2145 [kernel.kallsyms] setup_
→˓new_exec
0.00% simpleperf 2145 2145 [kernel.kallsyms] __rcu_
→˓read_lock
console:/sdcard #

1.5.2 Perf

Perf is a profiler tool for Linux based systems that abstracts CPU hardware differences in Linux performance mea-
surements, while presenting a simple command-line interface.

More information on the tool can be found on link.

The Linux Kernel exposes several Performance Monitoring Unit (PMU) - CPU and non-CPU - events, as well as
software and tracepoint events to user space via the perf_event_open system call, which is used by perf to collect
and process the event’s data.

List of available events

A list of the different supported events can be obtained by running the command perf list. An example of the output
provided by the command is presented below for reference:

perf list
List of pre-defined events (to be used in -e or -M):

branch-instructions OR branches [Hardware event]
branch-misses [Hardware event]
bus-cycles [Hardware event]
cache-misses [Hardware event]

(continues on next page)

54 Chapter 1. Total Compute: TC23.1

https://perf.wiki.kernel.org/index.php/Main_Page

Total Compute

(continued from previous page)

cache-references [Hardware event]
cpu-cycles OR cycles [Hardware event]
instructions [Hardware event]
stalled-cycles-backend OR idle-cycles-backend [Hardware event]
stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]

alignment-faults [Software event]
bpf-output [Software event]
cgroup-switches [Software event]
context-switches OR cs [Software event]
cpu-clock [Software event]
cpu-migrations OR migrations [Software event]
dummy [Software event]
emulation-faults [Software event]
major-faults [Software event]
minor-faults [Software event]
page-faults OR faults [Software event]
task-clock [Software event]

duration_time [Tool event]
user_time [Tool event]
system_time [Tool event]

L1-dcache-load-misses [Hardware cache event]
L1-dcache-loads [Hardware cache event]
L1-icache-load-misses [Hardware cache event]
L1-icache-loads [Hardware cache event]
LLC-load-misses [Hardware cache event]
LLC-loads [Hardware cache event]
branch-load-misses [Hardware cache event]
branch-loads [Hardware cache event]
dTLB-load-misses [Hardware cache event]
dTLB-loads [Hardware cache event]
iTLB-load-misses [Hardware cache event]
iTLB-loads [Hardware cache event]
br_immed_retired OR armv9_cortex_a520/br_immed_retired/ [Kernel PMU event]
br_immed_retired OR armv9_cortex_a725/br_immed_retired/ [Kernel PMU event]
br_immed_retired OR armv9_cortex_x925/br_immed_retired/ [Kernel PMU event]
br_mis_pred OR armv9_cortex_a520/br_mis_pred/ [Kernel PMU event]
br_mis_pred OR armv9_cortex_a725/br_mis_pred/ [Kernel PMU event]
br_mis_pred OR armv9_cortex_x925/br_mis_pred/ [Kernel PMU event]
(...)
ttbr_write_retired OR armv9_cortex_a520/ttbr_write_retired/ [Kernel PMU event]
ttbr_write_retired OR armv9_cortex_a725/ttbr_write_retired/ [Kernel PMU event]
ttbr_write_retired OR armv9_cortex_x925/ttbr_write_retired/ [Kernel PMU event]
unaligned_ldst_retired OR armv9_cortex_a520/unaligned_ldst_retired/ [Kernel PMU event]
unaligned_ldst_retired OR armv9_cortex_a725/unaligned_ldst_retired/ [Kernel PMU event]
arm_cspmu_0/cycles/ [Kernel PMU event]
arm_cspmu_1/cycles/ [Kernel PMU event]
arm_cspmu_2/cycles/ [Kernel PMU event]
arm_cspmu_3/cycles/ [Kernel PMU event]
arm_dsu_0/bus_access/ [Kernel PMU event]

(continues on next page)

1.5. System profiling, Applications tracing and Trace analysis 55

Total Compute

(continued from previous page)

arm_dsu_0/bus_cycles/ [Kernel PMU event]
arm_dsu_0/cycles/ [Kernel PMU event]
arm_dsu_0/memory_error/ [Kernel PMU event]
arm_spe_0// [Kernel PMU event]
arm_spe_1// [Kernel PMU event]
cs_etm// [Kernel PMU event]
cs_etm/autofdo/ [Kernel PMU event]
(...)
alarmtimer:alarmtimer_cancel [Tracepoint event]
alarmtimer:alarmtimer_fired [Tracepoint event]
alarmtimer:alarmtimer_start [Tracepoint event]
alarmtimer:alarmtimer_suspend [Tracepoint event]
(...)

Note: The previous command may present its output in an unformatted way when running on the FVP. It may be
desirable to instead redirect its output to a file and then list the contents of that file by running the following command
sequence:

perf list > perf_list.txt
cat perf_list.txt

Perf Stat

The stat command can be used to get event counter values of the profiled processes. Some examples of its usage are
presented following, as well as some considerations to take into account when considering TC3, with direct implications
on the perf stat command.

Special considerations considering TC3 and implications on the perf stat command

TC3 defines per-microarchitecture PMU instances. As a result, the Kernel CPU PMU events will be displayed for each
CPU micro-architecture during perf list, as illustrated on the following excerpt:

(...)
cpu_cycles OR armv9_cortex_a520/cpu_cycles/ [Kernel PMU event]
cpu_cycles OR armv9_cortex_a725/cpu_cycles/ [Kernel PMU event]
cpu_cycles OR armv9_cortex_x925/cpu_cycles/ [Kernel PMU event]

(...)

When considering Kernel 6.1 and for situations where the perf command is executed as a task-bound (cpu==-1), the
event is opened on an arbitrary CPU PMU and will only count on a subset of CPUs. This means, for example, that it
might open on a “big” PMU and only count while the task is running on “big” CPUs, but not while the task is running
on “little” CPUs. The following excerpt illustrates one such situation, where cycles are not counted for the command
ls, as the command did execute on the CPUs whose PMU were not selected by perf to open the events:

perf stat -e cycles -- ls
arm-ffa-tee.ko

Performance counter stats for 'ls':
(continues on next page)

56 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

<not counted> cycles (0.
→˓00%)

0.000509460 seconds time elapsed

0.000044000 seconds user
0.000000000 seconds sys

#

To overcome this implication and always ensure the retrieval of meaningful data, perf commands should be executed
in one of two possible ways:

1. providing to the perf command the individual CPU PMU events to count:

perf stat -e armv9_cortex_x925/cpu_cycles/,armv9_cortex_a725/cpu_cycles/,
→˓armv9_cortex_a520/cpu_cycles/ -- ls
arm-ffa-tee.ko

Performance counter stats for 'ls':

1224520 armv9_cortex_x925/cpu_cycles/
<not counted> armv9_cortex_a725/cpu_cycles/ ␣

→˓ (0.00%)
<not counted> armv9_cortex_a520/cpu_cycles/ ␣

→˓ (0.00%)

0.000970750 seconds time elapsed

0.001074000 seconds user
0.000000000 seconds sys

#

2. providing to the perf command a CPU mask so that the event is opened on all CPU PMUs:

perf stat -C 0-7 -e instructions,cycles -- ls
arm-ffa-tee.ko

Performance counter stats for 'CPU(s) 0-7':

1768977 instructions # 1.00 insn␣
→˓per cycle

1764843 cycles

0.000740800 seconds time elapsed
#

As can also be seen on the previous example, the instructions are not broken down to specific PMU type (CPU type).
This might be ambiguous for users to read the result, as instructions/cycles on different CPUs do have different perfor-
mance meaning.

This issue seems to have been fixed in newer Kernel versions (>=6.6) and when running the perf command with the
default event names (without providing the CPU mask). Therefore, a possible solution could be to compile perf from
newer source code, and copy the resulting binary into the rootfs before booting the image, or alternatively use the scp

1.5. System profiling, Applications tracing and Trace analysis 57

Total Compute

command to upload the binary to a booted system.

Additional perf stat command examples are illustrated following, where the -C 0-7 argument was used as a
workaround for the above-mentioned issue (TC3 FVP has 8 CPUs):

Single event
perf stat -C 0-7 -e <EVENT> -- <WORKLOAD>

Multiple events
perf stat -C 0-7 -e <EVENT1>,<EVENT2>,...,<EVENT-N> -- <WORKLOAD>

Event grouping
perf stat -C 0-7 -e '{<EVENT1>,<EVENT2>,...,<EVENT-N>}' -- <WORKLOAD>

Attaching to the existing process; 'sleep X' is passed to run perf for a specific␣
→˓duration
perf stat -C 0-7 -e <EVENT> -p <PID> -- sleep 1

Note: DSU and MCN PMU driver do not support all possible events by name. For cases where data for a particular
event is not visible, perf stat can be used with a raw event ID. Some examples of how to read the non-CPU PMU
event counters are presented below (the values 0xa2 and 0x182 are obtained from the respective component TRM
documentation):

perf stat -e arm_dsu_0/cycles/,arm_dsu_0/memory_error/ -- sleep 0.01

Performance counter stats for 'system wide':

2 arm_dsu_0/cycles/
0 arm_dsu_0/memory_error/

0.010749870 seconds time elapsed
#

Additional examples:
Count DSU cache read refills
perf stat -e arm_dsu_0/event=0xa2/ -- sleep 0.01
Count MCN MCTL_write_req
perf stat -e arm_cspmu_0/event=0x182/ -- sleep 0.01

Perf Record, Report and Annotate

Running perf record will collect and generate a perf.data file containing the sampling data of one or more events.
This data can be later analysed using perf report or perf annotate commands. By default, the perf record
uses cycles as a default event.

To modify the sampling period while running perf record, two approaches can be followed:

1. frequency: specifies the average rate of samples/sec (-F option);

2. count: enforces sampling at the specifies event period (-c option).

Some command examples illustrating this usage are presented below:

58 Chapter 1. Total Compute: TC23.1

Total Compute

Sample on event cycles at the default frequency
perf record -C 0-7 <WORKLOAD>

Sample on event instructions at 1000 samples/sec
perf record -C 0-7 -e instructions -F 1000 <WORKLOAD>

Sample on event instructions at every 2000 occurrences of event
perf record -C 0-7 -e instructions -c 2000 <WORKLOAD>

Perf and Arm SPE extension

The Arm Statistical Profiling Extension (SPE) feature provides a hardware assisted CPU operation profiling mechanism.
This provides accurate attribution of latencies and events down to individual instructions.

The general perf record command usage with SPE on TC23 platform looks like:

perf record -e arm_spe_<spe_instance>/<CONFIG PARAMETERS>/ -- taskset -c <cpu_list>
→˓<WORKLOAD>

TC23 supports SPE only on Mid and Big CPUs and not on small CPUs, there are 2 SPE instances, arm_spe_0 for
Mid CPUs (CPUs 2-5) and arm_spe_1 for big CPUs (CPUs 6-7). When workload needs to be analyzed using SPE,
it should be bound to CPUs which have the SPE capability using taskset. So on TC23 platform workloads should be
bound to CPUs 2-5 when using arm_spe_0 and workloads should be bound to CPUs 6-7 when using arm_spe_1.
min_latency=0 config parameter is mandatory to provide with any perf-spe command.

The following listing illustrates how to record SPE samples on Mid CPUs with arm_spe_0:

perf record -e arm_spe_0/min_latency=0/ -- taskset -c 2-5 ls
arm-tstee.ko build_env.cfg perf.data perf.data.old
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.225 MB perf.data]
#

The previously recorded data (perf.data) can then be analyzed using the perf report command as follows:

perf report
Warning:
Please install libunwind or libdw development packages during the perf build.
Only instruction-based sampling period is currently supported by Arm SPE.
To display the perf.data header info, please use --header/--header-only option
#
#
Total Lost Samples: 0
#
Samples: 853 of event 'l1d-access'
Event count (approx.): 853
#
Children Self Command Shared Object Symbol
........
#

31.42% 31.42% ls [kernel.kallsyms] [k] __sanitizer_cov_trace_
9.03% 9.03% taskset [kernel.kallsyms] [k] __sanitizer_cov_trace_
1.88% 1.88% ls [kernel.kallsyms] [k] next_uptodate_page

(continues on next page)

1.5. System profiling, Applications tracing and Trace analysis 59

Total Compute

(continued from previous page)

1.52% 1.52% ls [kernel.kallsyms] [k] do_set_pte
1.41% 1.41% ls [kernel.kallsyms] [k] search_cmp_ftr_reg
1.41% 1.41% ls [kernel.kallsyms] [k] unmap_page_range
1.06% 1.06% ls [kernel.kallsyms] [k] __pi_copy_page
1.06% 1.06% ls [kernel.kallsyms] [k] __rcu_read_unlock

(...)

The previous example only specify min_latency=0 required config parameter. However, there can be situations where
making usage of the other config parameters may help to filter profiling information. Complementing the previous
example, let’s assume it would be desirable to make usage of the config parameter event_filter=2, which discards
all samples which do not have retired instructions events. The following command listing illustrates the command
usage considering this scenario:

perf record -e arm_spe_0/min_latency=0,event_filter=2/ -- taskset -c 2 ls
arm-tstee.ko build_env.cfg perf.data perf.data.old
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.225 MB perf.data]
#

Detailed information regarding the config parameters can be found at link.

Kernel config and prerequisites for enabling Arm SPE can also be found in the Kernel documentation.

1.5.3 Perfetto

Perfetto is an open-source stack developed for performance instrumentation and trace analysis. It offers services and
libraries for recording system-level and app-level traces, native and Java heap profiling, a library for analysing traces
using SQL, and a web-based user interface (UI) that allows to visualize and explore the collected traces.

It has support for ftrace, atrace, /proc/{stat,vmstat,pid}/* and perf_event as data sources to collect system
level traces. A data source can be seen as the capability, exposed by a producer, of providing some tracing data. The
producer is an entity that offers the ability to contribute to the trace, advertising this ability with one or more data
sources. A consumer is an entity that controls the tracing service, provides to the tracing service the trace configuration
and reads back the trace buffers. The tracing service is a long-lived entity (i.e. a system daemon on Linux/Android)
which handles the tracing sessions, routes trace configuration from consumer to producers, and manages trace buffers.

The data source defines its own schema (a protobuf) consisting of data source trace config (what kind of input config
it would expect from the consumer) and trace packets (what kind of data it would output into the trace).

Some examples of data sources advertised by different producers to collect system-level traces are listed below:

• linux.process_stats

• linux.ftrace

• linux.sys_stats

• linux.perf

60 Chapter 1. Total Compute: TC23.1

https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/perf-arm-spe.txt

Total Compute

Recording and Visualising Traces with Perfetto

Perfetto can record traces, using either the UI (available at https://ui.perfetto.dev/#!/record) or the command line. An
example of how perfetto can be used to collect traces using the command line is present below:

the following commands are intended to be run on the host PC;
only applicable for the following command, the current path is assumed to be <TC_
→˓WORKSPACE>
export PATH="$(pwd)/src/android/out/host/linux-x86/bin:${PATH}"
adb connect localhost:<PORT>
adb devices
adb -s localhost:<PORT> push config.txt /data/local/tmp/config.txt
adb -s localhost:<PORT> shell perfetto -o /data/misc/perfetto-traces/trace_file.perfetto-
→˓trace --txt -c /data/local/tmp/config.txt
adb -s localhost:<PORT> pull /data/misc/perfetto-traces/trace_file.perfetto-trace ./

Some complementing considerations regarding the previous presented command listing:

• the use of -s localhost:<PORT> can be ignored if there is only one ADB instance available for debug
to the host;

• the default ADB port is 5555; however, in cases where there are more than one ADB instance available for
debug to the host, the port may change; in these situations refer to the output of the adb devices command
or to the FVP-model start up log information to understand which port was assigned as replacement; the
ADB connection on Android section provides additional information that can be useful to troubleshoot the
connection;

• config.txt contains the perfetto trace config; some examples of this config will be presented in the Trace
config examples subsection.

Once the perfetto trace file is collected and downloaded to the host, it can be loaded into the perfetto UI (available at
https://ui.perfetto.dev/) using the option “open trace file”, as illustrated on the following image:

1.5. System profiling, Applications tracing and Trace analysis 61

https://ui.perfetto.dev/#!/record
https://ui.perfetto.dev/

Total Compute

Detailed information regarding perfetto can be found on the official documentation available at https://perfetto.dev/
docs/.

Trace config examples

This subsection provides three trace config examples that can be used to control the tracing service and influence the
sampled data on the TC3 platform. Alongside to each trace configuration, examples of the visualisation of the respective
captured trace data using the Perfetto UI are also included for reference.

Additional examples of data source trace configurations for different supported data sources can be found at https:
//perfetto.dev/docs/ (please refer to the “Data sources” section). Some additional config examples can be found in
test/configs/ directory in perfetto source code.

A full list of supported ftrace events can be found in file protos/perfetto/trace/ftrace/ftrace_event.
proto in perfetto source code.

A full list of supported meminfo and vmstat counters can be found in file protos/perfetto/common/
sys_stats_counters.proto in perfetto source code.

Example 1: collect ftrace scheduling events, process stats and system stats counters every
1000ms:

Trace configuration file:

buffers {
size_kb: 16384
fill_policy: RING_BUFFER

}

buffers {
size_kb: 16384
fill_policy: RING_BUFFER

}

data_sources {
config {
name: "linux.ftrace"
target_buffer: 0
ftrace_config {
Scheduling information and process tracking. Useful for:
- what is happening on each CPU at each moment
- why a thread was de-scheduled
- parent/child relationships between processes and threads.
ftrace_events: "sched/sched_switch"
ftrace_events: "power/suspend_resume"
ftrace_events: "sched/sched_process_exit"
ftrace_events: "sched/sched_process_free"
ftrace_events: "task/task_newtask"
ftrace_events: "task/task_rename"

Wakeup info. Allows to compute how long a task was
blocked due to CPU contention.
ftrace_events: "sched/sched_wakeup"

(continues on next page)

62 Chapter 1. Total Compute: TC23.1

https://perfetto.dev/docs/
https://perfetto.dev/docs/
https://perfetto.dev/docs/
https://perfetto.dev/docs/

Total Compute

(continued from previous page)

os.Trace markers:
ftrace_events: "ftrace/print"
RSS and ION buffer events:
ftrace_events: "mm_event/mm_event_record"
ftrace_events: "kmem/rss_stat"
ftrace_events: "kmem/ion_heap_grow"
ftrace_events: "kmem/ion_heap_shrink"

}
}

}

data_sources {
config {
name: "linux.sys_stats"
target_buffer: 1
sys_stats_config {
meminfo_period_ms: 100
meminfo_counters: MEMINFO_MEM_AVAILABLE
meminfo_counters: MEMINFO_BUFFERS
meminfo_counters: MEMINFO_CACHED
meminfo_counters: MEMINFO_SWAP_CACHED
meminfo_counters: MEMINFO_ACTIVE
meminfo_counters: MEMINFO_INACTIVE
meminfo_counters: MEMINFO_ACTIVE_ANON
meminfo_counters: MEMINFO_INACTIVE_ANON
meminfo_counters: MEMINFO_ACTIVE_FILE
meminfo_counters: MEMINFO_INACTIVE_FILE
meminfo_counters: MEMINFO_UNEVICTABLE

vmstat_period_ms: 100
vmstat_counters: VMSTAT_NR_FREE_PAGES
vmstat_counters: VMSTAT_NR_ALLOC_BATCH
vmstat_counters: VMSTAT_NR_INACTIVE_ANON
vmstat_counters: VMSTAT_NR_VMSCAN_WRITE
vmstat_counters: VMSTAT_NR_VMSCAN_IMMEDIATE_RECLAIM
vmstat_counters: VMSTAT_NR_WRITEBACK_TEMP

stat_period_ms: 100
stat_counters: STAT_CPU_TIMES
stat_counters: STAT_IRQ_COUNTS
stat_counters: STAT_FORK_COUNT

}
}

}

data_sources: {
config {

name: "linux.process_stats"
target_buffer: 0
process_stats_config {

scan_all_processes_on_start: true

(continues on next page)

1.5. System profiling, Applications tracing and Trace analysis 63

Total Compute

(continued from previous page)

proc_stats_poll_ms: 1000
}

}
}

duration_ms: 1000

Perfetto UI visualisation:

Example 2: collect cpu_cycles and instructions CPU PMU counters on all CPUs:

Trace configuration file:

buffers {
size_kb: 10240
fill_policy: RING_BUFFER

}

data_sources {
config {
name: "linux.perf"
target_buffer: 0
perf_event_config {
all_cpus: true
timebase {
frequency: 99
counter: HW_CPU_CYCLES
timestamp_clock: PERF_CLOCK_MONOTONIC

(continues on next page)

64 Chapter 1. Total Compute: TC23.1

../../_images/perfetto_ex1_ui_visualisation.png

Total Compute

(continued from previous page)

}
}

}
}

data_sources {
config {
name: "linux.perf"
target_buffer: 0
perf_event_config {
all_cpus: true
timebase {
frequency: 99
counter: HW_INSTRUCTIONS
timestamp_clock: PERF_CLOCK_MONOTONIC

}
}

}
}

duration_ms: 1000

Perfetto UI visualisation:

1.5. System profiling, Applications tracing and Trace analysis 65

../../_images/perfetto_ex2_ui_visualisation.png

Total Compute

Example 3: call stack sampling of processes:

Trace configuration file:

buffers {
size_kb: 10240
fill_policy: RING_BUFFER

}

data_sources {
config {
name: "linux.perf"
target_buffer: 0
perf_event_config {
timebase {
frequency: 99
timestamp_clock: PERF_CLOCK_MONOTONIC

}
callstack_sampling {
kernel_frames: true

}
}

}
}

duration_ms: 1000

Perfetto UI visualisation:

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

66 Chapter 1. Total Compute: TC23.1

../../_images/perfetto_ex3_ui_visualisation.png

Total Compute

1.6 Security

1.6.1 Assumptions and Delegated Mitigations

ID 01
Assumption Physical attack is out of scope.
Delegated Mitigation None. None.
Impact if assumption is wrong Unhandled vulnerabilities.

ID 02
Assumption Part of NOR flash access restriction is controlled by end platform providers.
Delegated
Mitigation

The current hardware and software implementations lack protection to NOR Flash. The vendor
should add protection before NOR Flash and program the access restrictions similar to the Memory
Side Filter (MSF).

Impact if
assumption is
wrong

Secure keys/FIP image can be overwritten.

ID 03
Assumption Part of DDR region access restriction is controlled by end platform providers.
Delegated Miti-
gation

The current hardware and software implementations lack protection to DDR. The vendor should
add protection before DDR and program the access restrictions similar to the Memory Side Filter
(MSF).

Impact if the
assumption is
wrong

Can be overwritten by Malicious software.

ID 04
Assump-
tion

The firmware update capsule is generated from a working set of firmware image blobs (TF-A BL2,
SCP BL2, etc.) and not tampered in DDR. (The Firmware Update Capsule contains the FIP image
and additional FWU specific headers. On the TC SW stack reference design, the update capsule is
preloaded manually to the DDR before execution.)

Dele-
gated
Mitiga-
tion

None.

Impact
if the as-
sumption
is wrong

Boot hangs.

ID 05
Assumption Not using the dummy key provided with the TC software stack for the platform

secure boot.
Delegated Mitigation The vendor should follow RSE guidelines to create custom keys and securely store

them.
Impact if the assumption is
wrong

The keys are exposed and the secure boot is compromised.

1.6. Security 67

https://tf-m-user-guide.trustedfirmware.org/design_docs/booting/tfm_secure_boot.html#secure-boot

Total Compute

ID 06
Assumption Securely handle debug and trace for production releases.
Delegated Mitiga-
tion

The vendor should disable the debug and trace capability for production releases or enable
proper debug authentication as recommended by DEN0034.

Impact if the as-
sumption is wrong

Secure data can be exposed. Arbitrary code can be executed.

1.7 Expected test results

Contents

• Expected test results

– SCMI unit tests

– TF-A unit tests

– TF-M unit tests

– OP-TEE unit tests

– Trusted Services and Client application unit tests

– Trusty unit tests

– Microdroid Demo unit tests

– Kernel selftest unit tests

– Rotational scheduler unit tests

– MPAM unit tests

– MPMM unit tests

– BTI unit tests

– MTE unit tests

– PAUTH unit tests

– EAS with Lisa unit tests

– CPU hardware capabilities

– GPU GLES Integration tests

– GPU EGL Integration tests

68 Chapter 1. Total Compute: TC23.1

https://developer.arm.com/documentation/den0034/latest

Total Compute

1.7.1 SCMI unit tests

cat arm_scmi_test_log.txt
**** SCMI Compliance Suite ****

Using SCMI kernel Raw transport rooted at:/sys/kernel/debug/scmi/0/raw
Resetting SCMI kernel Raw queues.
Using *strict* SCMI protocol version checking

*** Starting BASE tests ***
101: Base protocol version check

[Check 1] Query protocol version
MSG HDR : 0x00004000
NUM PARAM : 0
CHECK STATUS : PASSED [SCMI_STATUS_SUCCES]
CHECK HEADER : PASSED [0x00004000]
RETURN COUNT : 1
RETURN[00] : 0x00020000
VERSION : 0x00020000 : CONFORMANT

102: Base protocol attributes check
[Check 1] Query protocol attributes
MSG HDR : 0x00044001
NUM PARAM : 0
CHECK STATUS : PASSED [SCMI_STATUS_SUCCES]
CHECK HEADER : PASSED [0x00044001]
RETURN COUNT : 1
RETURN[00] : 0x00000204
CHECK RSVD BITS: PASSED
CHECK NUM AGENTS: PASSED [0x00000002]
CHECK NUM PROTOCOLS: PASSED [0x00000004] : CONFORMANT

(...output truncated...)

517: Clock config set check
NUM CLOCKS : 3

CLOCK ID: 0
[Check 1] Set config with attributes :0
MSG HDR : 0x05885007
NUM PARAM : 2
PARAMETER[00] : 0x00000000
PARAMETER[01] : 0x00000000
CHECK HEADER : PASSED [0x05885007]
CHECK STATUS : FAILED

EXPECTED : SCMI_DENIED_ERROR
RECEIVED : SCMI_NOT_SUPPORTED

CHECK STATUS : PASSED [SCMI_NOT_SUPPORTED]
CLOCK ID: 1
[Check 1] Set config with attributes :1
MSG HDR : 0x058c5007
NUM PARAM : 2
PARAMETER[00] : 0x00000001
PARAMETER[01] : 0x00000001
CHECK HEADER : PASSED [0x058c5007]
CHECK STATUS : FAILED

(continues on next page)

1.7. Expected test results 69

Total Compute

(continued from previous page)

EXPECTED : SCMI_DENIED_ERROR
RECEIVED : SCMI_STATUS_SUCCES

CHECK STATUS : FAILED
EXPECTED : SCMI_NOT_SUPPORTED
RECEIVED : SCMI_STATUS_SUCCES

CHECK STATUS : PASSED [SCMI_STATUS_SUCCES]
RETURN COUNT : 0

[Check 2] Verify the changed attribute
MSG HDR : 0x05905003
NUM PARAM : 1
PARAMETER[00] : 0x00000001
CHECK STATUS : PASSED [SCMI_STATUS_SUCCES]
CHECK HEADER : PASSED [0x05905003]
CHECK RSVD BITS: PASSED
RETURN COUNT : 5
RETURN[00] : 0x00000001
RETURN[01] : 0x45584950
RETURN[02] : 0x00305f4c
RETURN[03] : 0x00000000
RETURN[04] : 0x00000000
CHECK CLOCK STATUS : PASSED [0x00000001]

[Check 3] Restore the original attributes :0
MSG HDR : 0x05945007
NUM PARAM : 2
PARAMETER[00] : 0x00000001
PARAMETER[01] : 0x00000000
CHECK HEADER : PASSED [0x05945007]
CHECK STATUS : FAILED

EXPECTED : SCMI_STATUS_SUCCES
RECEIVED : SCMI_NOT_SUPPORTED : NON CONFORMANT

*** Starting SENSOR tests ***
Calling agent have no access to SENSOR protocol

*** Starting RESET tests ***
Calling agent have no access to RESET protocol

*** Starting VOLTAGE tests ***
Calling agent have no access to Voltage protocol
**
TOTAL TESTS: 86 PASSED: 75 FAILED: 1 SKIPPED: 10

**

**** SCMI tests complete ****

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

70 Chapter 1. Total Compute: TC23.1

Total Compute

1.7.2 TF-A unit tests

NOTICE: Booting trusted firmware test framework
NOTICE: Built : 13:11:16, Aug 8 2024
NOTICE: v2.10(tc,release):8c2ca7e

NOTICE: Running at NS-EL2
NOTICE: Starting a new test session
--
Running test suite 'Framework Validation'
Description: Validate the core features of the test framework

> Executing 'NVM support'
TEST COMPLETE Passed

> Executing 'NVM serialisation'
TEST COMPLETE Passed

> Executing 'Events API'
TEST COMPLETE Passed

> Executing 'IRQ handling'
TEST COMPLETE Passed

> Executing 'SGI support'
TEST COMPLETE Passed

--
Running test suite 'Timer framework Validation'
Description: Validate the timer driver and timer framework

> Executing 'Verify the timer interrupt generation'
TEST COMPLETE Passed

> Executing 'Target timer to a power down cpu'
TEST COMPLETE Passed

> Executing 'Test scenario where multiple CPUs call same timeout'
TEST COMPLETE Passed

--

(output trancated)

> Executing 'Check if DIT Bit is preserved in RL/NS'
TEST COMPLETE Skipped

FEAT_RME not supported

******************************* Summary *******************************
> Test suite 'Framework Validation'

Passed
> Test suite 'Timer framework Validation'

Passed
(continues on next page)

1.7. Expected test results 71

Total Compute

(continued from previous page)

> Test suite 'Boot requirement tests'
Passed

> Test suite 'Query runtime services'
Passed

> Test suite 'PSCI Version'
Passed

> Test suite 'PSCI Affinity Info'
Passed

> Test suite 'CPU Hotplug'
Passed

> Test suite 'PSCI CPU Suspend'
Passed

> Test suite 'PSCI STAT'
Passed

> Test suite 'PSCI NODE_HW_STATE'
Passed

> Test suite 'PSCI Features'
Passed

> Test suite 'PSCI MIGRATE_INFO_TYPE'
Passed

> Test suite 'PSCI mem_protect_check'
Passed

> Test suite 'SDEI'
Passed

> Test suite 'Runtime Instrumentation Validation'
Passed

> Test suite 'TRNG'
Passed

> Test suite 'EM-ABI'
Passed

> Test suite 'IRQ support in TSP'
Passed

> Test suite 'TSP handler standard functions result test'
Passed

> Test suite 'Stress test TSP functionality'
Passed

> Test suite 'TSP PSTATE test'
Passed

> Test suite 'EL3 power state parser validation'
Passed

> Test suite 'State switch'
Passed

> Test suite 'CPU extensions'
Passed

> Test suite 'ARM_ARCH_SVC'
Passed

> Test suite 'Performance tests'
Passed

> Test suite 'SMC calling convention'
Passed

> Test suite 'FF-A Setup and Discovery'
Passed

(continues on next page)

72 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

> Test suite 'FF-A SMCCC compliance'
Passed

> Test suite 'SP exceptions'
Passed

> Test suite 'FF-A Direct messaging'
Passed

> Test suite 'FF-A Group0 interrupts'
Passed

> Test suite 'FF-A Power management'
Passed

> Test suite 'FF-A Memory Sharing'
Passed

> Test suite 'SIMD,SVE Registers context'
Passed

> Test suite 'FF-A Notifications'
Passed

> Test suite 'PMU Leakage'
Passed

> Test suite 'DebugFS'
Passed

> Test suite 'RMI and SPM tests'
Passed

> Test suite 'Realm payload at EL1'
Passed

=================================
Tests Skipped : 154
Tests Passed : 85
Tests Failed : 0
Tests Crashed : 0
Total tests : 239
=================================
NOTICE: Exiting tests.

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.3 TF-M unit tests

Execute test suites for the Secure area
Running Test Suite IPC secure interface test (TFM_S_IPC_TEST_1XXX)...
> Executing 'TFM_S_IPC_TEST_1001'

Description: 'Get PSA framework version'
TEST: TFM_S_IPC_TEST_1001 - PASSED!

> Executing 'TFM_S_IPC_TEST_1002'
Description: 'Get version of an RoT Service'
TEST: TFM_S_IPC_TEST_1002 - PASSED!

> Executing 'TFM_S_IPC_TEST_1004'
Description: 'Request connection-based RoT Service'
TEST: TFM_S_IPC_TEST_1004 - PASSED!

(continues on next page)

1.7. Expected test results 73

Total Compute

(continued from previous page)

> Executing 'TFM_S_IPC_TEST_1006'
Description: 'Call PSA RoT access APP RoT memory test service'

Connect success!
Call success!
TEST: TFM_S_IPC_TEST_1006 - PASSED!

> Executing 'TFM_S_IPC_TEST_1012'
Description: 'Request stateless service'
TEST: TFM_S_IPC_TEST_1012 - PASSED!

TESTSUITE PASSED!

(output trancated)

TEST: DPE_S_TEST_MUST_BE_THE_LAST - PASSED!
TESTSUITE PASSED!
*** Secure test suites summary ***
Test suite 'IPC secure interface test (TFM_S_IPC_TEST_1XXX)' has PASSED
Test suite 'Crypto secure interface tests (TFM_S_CRYPTO_TEST_1XXX)' has PASSED
Test suite 'Platform Service Secure interface tests(TFM_S_PLATFORM_TEST_1XXX)' has PASSED
Test suite 'DPE Secure Tests (DPE_S_TEST_1XXX)' has PASSED
*** End of Secure test suites ***

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.4 OP-TEE unit tests

xtest
Run test suite with level=0

TEE test application started over default TEE instance
##
#
regression
#
##

* regression_1001 Core self tests
- 1001 - skip test, pseudo TA not found
regression_1001 OK

* regression_1002 PTA parameters
- 1002 - skip test, pseudo TA not found
regression_1002 OK

(...output truncated...)

regression_8101 OK
regression_8102 OK
regression_8103 OK

(continues on next page)

74 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

+---
29678 subtests of which 0 failed
107 test cases of which 0 failed
0 test cases were skipped
TEE test application done!
#

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.5 Trusted Services and Client application unit tests

Expected command output for the Trusted Services:

ts-service-test -g FwuServiceTests -g ItsServiceTests -g␣
→˓CryptoKeyDerivationServicePackedcTests -g CryptoMacServicePackedcTests -g␣
→˓CryptoCipherServicePackedcTests -g CryptoHashServicePackedcTests -g␣
→˓CryptoServicePackedcTests -g CryptoServiceProtobufTests -g CryptoServiceLimitTests -v
TEST(FwuServiceTests, checkMetadataAccess) - 962 ms
TEST(FwuServiceTests, checkImgDirAccess) - 894 ms
TEST(ItsServiceTests, storeNewItem) - 977 ms
TEST(CryptoKeyDerivationServicePackedcTests, deriveAbort) - 908 ms
TEST(CryptoKeyDerivationServicePackedcTests, hkdfDeriveBytes) - 968 ms
TEST(CryptoKeyDerivationServicePackedcTests, hkdfDeriveKey) - 949 ms
TEST(CryptoMacServicePackedcTests, macAbort) - 891 ms
TEST(CryptoMacServicePackedcTests, signAndVerify) - 3208 ms
TEST(CryptoCipherServicePackedcTests, cipherAbort) - 896 ms
TEST(CryptoCipherServicePackedcTests, encryptDecryptRoundtrip) - 1715 ms
TEST(CryptoHashServicePackedcTests, hashAbort) - 713 ms
TEST(CryptoHashServicePackedcTests, hashAndVerify) - 858 ms
TEST(CryptoHashServicePackedcTests, calculateHash) - 641 ms
TEST(CryptoServicePackedcTests, getUefiPrivAuthVarFingerprint) - 666 ms
TEST(CryptoServicePackedcTests, verifyPkcs7Signature) - 5661 ms
TEST(CryptoServicePackedcTests, generateRandomNumbers) - 700 ms
TEST(CryptoServicePackedcTests, asymEncryptDecryptWithSalt) - 73067 ms
TEST(CryptoServicePackedcTests, asymEncryptDecrypt) - 62412 ms
TEST(CryptoServicePackedcTests, signAndVerifyEat) - 12352 ms
TEST(CryptoServicePackedcTests, signAndVerifyMessage) - 12439 ms
TEST(CryptoServicePackedcTests, signAndVerifyHash) - 12465 ms
TEST(CryptoServicePackedcTests, exportAndImportKeyPair) - 1646 ms
TEST(CryptoServicePackedcTests, exportPublicKey) - 2582 ms
TEST(CryptoServicePackedcTests, purgeKey) - 1584 ms
TEST(CryptoServicePackedcTests, copyKey) - 87618 ms
TEST(CryptoServicePackedcTests, generatePersistentKeys) - 2622 ms
TEST(CryptoServicePackedcTests, generateVolatileKeys) - 2504 ms
TEST(CryptoServiceProtobufTests, generateRandomNumbers) - 621 ms
TEST(CryptoServiceProtobufTests, asymEncryptDecryptWithSalt) - 38097 ms
TEST(CryptoServiceProtobufTests, asymEncryptDecrypt) - 55196 ms
TEST(CryptoServiceProtobufTests, signAndVerifyMessage) - 12452 ms

(continues on next page)

1.7. Expected test results 75

Total Compute

(continued from previous page)

TEST(CryptoServiceProtobufTests, signAndVerifyHash) - 12486 ms
TEST(CryptoServiceProtobufTests, exportAndImportKeyPair) - 1662 ms
TEST(CryptoServiceProtobufTests, exportPublicKey) - 2558 ms
TEST(CryptoServiceProtobufTests, generatePersistentKeys) - 2640 ms
TEST(CryptoServiceProtobufTests, generateVolatileKeys) - 2525 ms
TEST(CryptoServiceLimitTests, volatileRsaKeyPairLimit) - 2101315 ms
TEST(CryptoServiceLimitTests, volatileEccKeyPairLimit) - 84459 ms

OK (46 tests, 38 ran, 328 checks, 0 ignored, 8 filtered out, 2607650 ms)

#

Expected command output for the Client application:

ts-demo

Demonstrates use of trusted services from an application

A client requests a set of crypto operations performed by
the Crypto service. Key storage for persistent keys is
provided by the Secure Storage service via the ITS client.

Generating random bytes length: 1
Operation successful
Random bytes:

AE
Generating random bytes length: 7

Operation successful
Random bytes:

41 D0 FA 7E 9A 6B 46
Generating random bytes length: 128

Operation successful
Random bytes:

DF 76 FB 96 A7 C3 CE 98
90 FD 51 50 20 EF CB 9E
CA 70 0A D1 7A 4E 02 FA
0B FA 10 88 5A 1B 84 B7
72 58 7E B7 9F 76 BD E0
FE 40 45 16 EF 10 82 93
2B 64 BB D3 62 AE A9 46
B9 3F 0E FF 07 23 36 CF
40 95 8B E5 D5 CA 1A C6
8A C1 AB 59 D9 9F 18 3F
EB E5 38 8D BB 2A 7D 32
4A 69 1F D6 24 5F 53 2F
5C 77 BC E8 63 16 9E D3
08 CD 52 F8 89 B6 0A 82
21 05 60 42 ED 8B 76 0F
79 CE CA 09 4F 29 95 57

Generating ECC signing key
Operation successful

Signing message: "The quick brown fox" using key: 256
(continues on next page)

76 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

Operation successful
Signature bytes:

13 03 0E 48 E6 88 1B 16
90 D0 48 E4 36 37 E9 AB
9E 1E 84 AB 2A E8 D7 84
4B 03 1A 00 06 D1 52 52
36 40 0D BD D3 B2 DD E5
00 10 08 96 14 8C DE 99
CF DC AF 98 1F 38 16 55
53 ED 01 6F EE D3 82 32

Verify signature using original message: "The quick brown fox"
Operation successful

Verify signature using modified message: "!he quick brown fox"
Successfully detected modified message

Signing message: "jumps over the lazy dog" using key: 256
Operation successful
Signature bytes:

12 44 8C 20 DE D8 3F 66
9F 6B 84 ED 6D 16 DA D3
70 DD 44 2C B9 4C 72 52
CD 61 4B 38 9F 99 35 F4
FC E2 82 B7 5E 7C 65 A3
DB 01 36 1B 56 C4 A4 EF
FD 98 6E 81 88 A7 0E A7
0F 72 E2 8D 8D 1B A7 2A

Verify signature using original message: "jumps over the lazy dog"
Operation successful

Verify signature using modified message: "!umps over the lazy dog"
Successfully detected modified message

Generating RSA encryption key
Operation successful

Encrypting message: "Top secret" using RSA key: 257
Operation successful
Encrypted message:

AC B8 A4 68 74 9C AA 56
F6 76 E5 09 1D A4 04 D6
C2 19 B4 63 F1 64 C5 AC
BB FB 81 9D 4F 2D 12 0F

Decrypting message using RSA key: 257
Operation successful
Decrypted message: "Top secret"

Exporting public key: 256
Operation successful
Public key bytes:

04 74 D1 5F 50 01 8F CB
35 02 FA E8 00 1B 33 1C
A2 31 75 FE E4 EF 07 3B
11 79 80 DA 04 C0 32 2E
98 8F 2E 14 2F 02 27 11
88 54 7F CA 1A BC 7C 35
EC 64 35 5F B4 4B EB 57
CD 84 A5 F9 50 FE 64 5C

(continues on next page)

1.7. Expected test results 77

Total Compute

(continued from previous page)

24
Destroying signing key: 256

Operation successful
Destroying encryption key: 257

Operation successful
#

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.6 Trusty unit tests

console:/ # tipc-test -t ta2ta-ipc
ta2ta_ipc_test:
ipc-unittest-main: 2556: first_free_handle_index: 3
ipc-unittest-main: 2540: retry ret 0, event handle 1000, event 0x1
ipc-unittest-main: 2543: nested ret -13, event handle 1000, event 0x1
[RUN] ipc.wait_negative
[OK] ipc.wait_negative
[RUN] ipc.close_handle_negative
[OK] ipc.close_handle_negative
[RUN] ipc.set_cookie_negative
[OK] ipc.set_cookie_negative
[RUN] ipc.port_create_negative
[OK] ipc.port_create_negative
[RUN] ipc.port_create
[OK] ipc.port_create
[RUN] ipc.connect_negative
[OK] ipc.connect_negative
[RUN] ipc.connect_close
[OK] ipc.connect_close
[RUN] ipc.connect_access
[OK] ipc.connect_access
[RUN] ipc.accept_negative
[OK] ipc.accept_negative
[DISABLED] ipc.DISABLED_accept
[RUN] ipc.get_msg_negative
[OK] ipc.get_msg_negative
[RUN] ipc.put_msg_negative
[OK] ipc.put_msg_negative
[RUN] ipc.send_msg
[OK] ipc.send_msg
[RUN] ipc.send_msg_negative
[OK] ipc.send_msg_negative
[RUN] ipc.read_msg_negative
[OK] ipc.read_msg_negative
[RUN] ipc.end_to_end_msg
[OK] ipc.end_to_end_msg
[RUN] ipc.hset_create

(continues on next page)

78 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

[OK] ipc.hset_create
[RUN] ipc.hset_add_mod_del
[OK] ipc.hset_add_mod_del
[RUN] ipc.hset_add_self
[OK] ipc.hset_add_self
[RUN] ipc.hset_add_loop
[OK] ipc.hset_add_loop
[RUN] ipc.hset_add_duplicate
[OK] ipc.hset_add_duplicate
[RUN] ipc.hset_wait_on_empty_set
[OK] ipc.hset_wait_on_empty_set
[DISABLED] ipc.DISABLED_hset_add_chan
[RUN] ipc.send_handle_negative
[OK] ipc.send_handle_negative
[RUN] ipc.recv_handle
[OK] ipc.recv_handle
[RUN] ipc.recv_handle_negative
[OK] ipc.recv_handle_negative
[RUN] ipc.echo_handle_bulk
[OK] ipc.echo_handle_bulk
[RUN] ipc.tipc_connect
[OK] ipc.tipc_connect
[RUN] ipc.tipc_send_recv_1
[OK] ipc.tipc_send_recv_1
[RUN] ipc.tipc_send_recv_hdr_payload
[OK] ipc.tipc_send_recv_hdr_payload
[==========] 28 tests ran.
[PASSED] 28 tests.
[DISABLED] 2 tests.
console:/ #

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.7 Microdroid Demo unit tests

(...output truncated...)

INFO: APK was built successfully.
INFO: ADB connecting to 127.0.0.1:5555
INFO: ADB connected to 127.0.0.1:5555
INFO: Checking ro.product.name
INFO: ro.product.name matches tc_fvp
INFO: Checking path of com.android.microdroid.tc
INFO: APK Installed path is: /system/app/TCMicrodroidDemoApp/TCMicrodroidDemoApp.apk
Created VM from "/data/local/tmp/virt/TCMicrodroidDemoApp.apk"!ConfigPath("assets/vm_
→˓config.json") with CID 2049, state is STARTING.
[2024-04-03T09:17:23.132825560+00:00 INFO crosvm] crosvm started.
[2024-04-03T09:17:23.133432232+00:00 INFO crosvm] CLI arguments parsed.

(continues on next page)

1.7. Expected test results 79

Total Compute

(continued from previous page)

[2024-04-03T09:17:23.149928488+00:00 INFO crosvm::crosvm::sys::unix::device_helpers]␣
→˓Trying to attach block device: /proc/self/fd/49
[2024-04-03T09:17:23.150215128+00:00 INFO crosvm::crosvm::sys::unix::device_helpers]␣
→˓Trying to attach block device: /proc/self/fd/54
[2024-04-03T09:17:23.196606144+00:00 INFO crosvm::crosvm::sys::unix::device_helpers]␣
→˓Trying to attach block device: /proc/self/fd/63
[0.089283][T21] Freeing initrd memory: 1652K
[0.089863][T17] cacheinfo: Unable to detect cache hierarchy for CPU 0
[0.091308][T1] brd: module loaded
[0.093654][T1] loop: module loaded
[0.093768][T1] virtio_blk virtio3: 1/0/0 default/read/poll queues
[0.093971][T1] virtio_blk virtio3: [vda] 100992 512-byte logical blocks (51.7 MB/
→˓49.3 MiB)
[0.114159][T1] GPT:Primary header thinks Alt. header is not at the end of the␣
→˓disk.
[0.114352][T1] GPT:100872 != 100991
[0.114438][T1] GPT:Alternate GPT header not at the end of the disk.
[0.114582][T1] GPT:100872 != 100991
[0.114626][T1] GPT: Use GNU Parted to correct GPT errors.
[0.114801][T1] vda: vda1 vda2
[0.114968][T1] virtio_blk virtio4: 1/0/0 default/read/poll queues
[0.115253][T1] virtio_blk virtio4: [vdb] 20608 512-byte logical blocks (10.6 MB/
→˓10.1 MiB)
[0.115994][T1] GPT:Primary header thinks Alt. header is not at the end of the␣
→˓disk.
[0.116152][T1] GPT:20552 != 20607
[0.116242][T1] GPT:Alternate GPT header not at the end of the disk.
[0.116396][T1] GPT:20552 != 20607
[0.116477][T1] GPT: Use GNU Parted to correct GPT errors.
[0.116636][T1] vdb: vdb1
[0.116834][T1] virtio_blk virtio5: 1/0/0 default/read/poll queues
[0.117146][T1] virtio_blk virtio5: [vdc] 20608 512-byte logical blocks (10.6 MB/
→˓10.1 MiB)
[0.117898][T1] GPT:Primary header thinks Alt. header is not at the end of the␣
→˓disk.
[0.118063][T1] GPT:20592 != 20607
[0.118135][T1] GPT:Alternate GPT header not at the end of the disk.
[0.118264][T1] GPT:20592 != 20607
[0.118345][T1] GPT: Use GNU Parted to correct GPT errors.
[0.118466][T1] vdc: vdc1 vdc2 vdc3 vdc4 vdc5
[0.118871][T1] zram: Added device: zram0
[0.119260][T1] rtc-pl030 2000.rtc: registered as rtc0
[0.119381][T1] rtc-pl030 2000.rtc: setting system clock to 2024-04-03T09:17:23␣
→˓UTC (1712135843)
[0.119609][T1] device-mapper: uevent: version 1.0.3
[0.119775][T1] device-mapper: ioctl: 4.47.0-ioctl (2022-07-28) initialised: dm-
→˓devel@redhat.com
[0.120060][T1] ipip: IPv4 and MPLS over IPv4 tunneling driver
[0.120294][T1] gre: GRE over IPv4 demultiplexor driver
[0.120409][T1] ip_gre: GRE over IPv4 tunneling driver
[0.120824][T1] IPv4 over IPsec tunneling driver
[0.121037][T1] Initializing XFRM netlink socket

(continues on next page)

80 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

[0.121148][T1] IPsec XFRM device driver
[0.121435][T1] NET: Registered PF_INET6 protocol family
[0.121963][T1] Segment Routing with IPv6
[0.122083][T1] In-situ OAM (IOAM) with IPv6
[0.122229][T1] mip6: Mobile IPv6
[0.122430][T1] sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver
[0.122818][T1] ip6_gre: GRE over IPv6 tunneling driver
[0.123047][T1] NET: Registered PF_PACKET protocol family
[0.123182][T1] NET: Registered PF_KEY protocol family
[0.123323][T1] NET: Registered PF_VSOCK protocol family
[0.124165][T1] page_owner is disabled
[0.124614][T1] Freeing unused kernel memory: 1088K
[0.133509][T1] Run /init as init process
[0.134628][T1] init: init first stage started!
[0.134767][T1] init: Unable to open /lib/modules, skipping module loading.
[0.135053][T1] init: [libfs_mgr] ReadFstabFromDt(): failed to read fstab from dt
[0.135518][T1] init: Using Android DT directory /proc/device-tree/firmware/
→˓android/
[0.137395][T1] init: [libfs_mgr] Created logical partition system_a on device /
→˓dev/block/dm-0
[0.137780][T1] init: [libfs_mgr] Created logical partition vendor_a on device /
→˓dev/block/dm-1
[0.138578][T39] init: Attempting to run /first_stage.sh...
[0.139359][T40] init: unable to execv /first_stage.sh, returned -1 errno 2
[0.139567][T40] init: unable to execv, returned -1 errno 2
[0.139942][T39] init: /first_stage.sh exited with status 0
[0.140128][T39] init: unable to execv, returned -1 errno 2
[0.140452][T39] init (39) used greatest stack depth: 13392 bytes left
[0.140652][T1] init: console shell exited with status 0
[0.140924][T1] init: Switching root to '/first_stage_ramdisk'
[0.141145][T1] init: [libfs_mgr] ReadFstabFromDt(): failed to read fstab from dt
[0.141644][T1] init: DSU not detected, proceeding with normal boot
[0.144962][T1] init: [libfs_avb] Returning avb_handle with status: Success
[0.145280][T1] init: [libfs_avb] Built verity table: '1 /dev/block/dm-0 /dev/
→˓block/dm-0 4096 4096 10592 10592 sha256␣
→˓b7f93850c7581f2354dc3f038df030beaeee5de2f28192e2c32d8049ae58fdba␣
→˓5e9304c3065e2ff6849d58e4d214d664b6a8972366f94079d8d37a500bf83e46 2 restart_on_
→˓corruption ignore_zero_blocks'
[0.146029][T1] device-mapper: verity: sha256 using implementation "sha256-generic
→˓"
[0.152161][T1] init: [libfs_mgr] superblock s_max_mnt_count:65535,/dev/block/dm-2
[0.154789][T1] EXT4-fs (dm-2): mounted filesystem with ordered data mode. Quota␣
→˓mode: disabled.
[0.155092][T1] init: [libfs_mgr] __mount(source=/dev/block/dm-2,target=/system,
→˓type=ext4)=0: Success
[0.155474][T1] init: Switching root to '/system'
[0.156126][T1] init: [libfs_avb] Built verity table: '1 /dev/block/dm-1 /dev/
→˓block/dm-1 4096 4096 1095 1095 sha256␣
→˓82999436607ad2321ccc9520e2d875bec2435aa88b71fae1ebe82a127c255706␣
→˓5536d032d54ca7a61feb92600f10dcc42a002e02be1b22926c0cd4b55a84e976 2 restart_on_
→˓corruption ignore_zero_blocks'
[0.156922][T1] device-mapper: verity: sha256 using implementation "sha256-generic
→˓" (continues on next page)

1.7. Expected test results 81

Total Compute

(continued from previous page)

[0.158980][T1] init: [libfs_mgr] superblock s_max_mnt_count:65535,/dev/block/dm-3
[0.159662][T1] EXT4-fs (dm-3): mounted filesystem without journal. Quota mode:␣
→˓disabled.
[0.159911][T1] init: [libfs_mgr] __mount(source=/dev/block/dm-3,target=/vendor,
→˓type=ext4)=0: Success
[0.160494][T1] init: Skipped setting INIT_AVB_VERSION (not in recovery mode)
[0.308305][T1] init: DM_DEV_STATUS failed for system_ext_a: No such device or␣
→˓address
[0.308453][T1] init: Could not update logical partition
[0.308614][T1] init: DM_DEV_STATUS failed for product_a: No such device or␣
→˓address
[0.308726][T1] init: Could not update logical partition
[0.308862][T1] init: Opening SELinux policy
[0.309137][T1] init: Error: Apex SEPolicy failed signature check
[0.309254][T1] init: Loading APEX Sepolicy from /system/etc/selinux/apex/
→˓SEPolicy.zip
[0.309361][T1] init: Failed to open package /system/etc/selinux/apex/SEPolicy.
→˓zip: No such file or directory
[0.311394][T1] init: Loading SELinux policy
[0.312782][T1] SELinux: Permission nlmsg_getneigh in class netlink_route_socket␣
→˓not defined in policy.
[0.312995][T1] SELinux: Permission bpf in class capability2 not defined in␣
→˓policy.
[0.313093][T1] SELinux: Permission checkpoint_restore in class capability2 not␣
→˓defined in policy.
[0.313238][T1] SELinux: Permission bpf in class cap2_userns not defined in␣
→˓policy.
[0.313355][T1] SELinux: Permission checkpoint_restore in class cap2_userns not␣
→˓defined in policy.
[0.313555][T1] SELinux: Class mctp_socket not defined in policy.
[0.313645][T1] SELinux: Class io_uring not defined in policy.
[0.313756][T1] SELinux: Class user_namespace not defined in policy.
[0.313859][T1] SELinux: the above unknown classes and permissions will be denied
[0.318081][T1] SELinux: policy capability network_peer_controls=1
[0.318197][T1] SELinux: policy capability open_perms=1
[0.318307][T1] SELinux: policy capability extended_socket_class=1
[0.318424][T1] SELinux: policy capability always_check_network=0
[0.318510][T1] SELinux: policy capability cgroup_seclabel=0
[0.318600][T1] SELinux: policy capability nnp_nosuid_transition=1
[0.318715][T1] SELinux: policy capability genfs_seclabel_symlinks=0
[0.318818][T1] SELinux: policy capability ioctl_skip_cloexec=0
[0.361504][T19] audit: type=1403 audit(1712135843.740:2): auid=4294967295␣
→˓ses=4294967295 lsm=selinux res=1
[0.362349][T1] selinux: SELinux: Loaded file context from:
[0.362577][T1] selinux: /system/etc/selinux/plat_file_contexts
[0.362827][T1] selinux: SELinux: Could not stat /dev/selinux: No such file or␣
→˓directory.
[0.363240][T19] audit: type=1404 audit(1712135843.740:3): enforcing=1 old_
→˓enforcing=0 auid=4294967295 ses=4294967295 enabled=1 old-enabled=1 lsm=selinux res=1
[0.392339][T1] init: init second stage started!
[0.394310][T1] selinux: SELinux: Loaded file context from:
[0.394524][T1] selinux: /system/etc/selinux/plat_file_contexts

(continues on next page)

82 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

[0.396143][T1] init: Using Android DT directory /proc/device-tree/firmware/
→˓android/
[0.397222][T1] init: Setting property 'ro.build.fingerprint' to 'unknown/unknown/
→˓unknown:unknown/.4349bf74/unknown:unknown/unknown'
[0.397930][T1] selinux: SELinux: Loaded file context from:
[0.398164][T1] selinux: /system/etc/selinux/plat_file_contexts
[0.398375][T1] init: Running restorecon...
[0.400021][T1] selinux: SELinux: Could not get canonical path for /metadata/ota/
→˓rollback-indicator restorecon: No such file or directory.
[0.400442][T1] selinux: SELinux: Could not get canonical path for /metadata/gsi␣
→˓restorecon: No such file or directory.
[0.400845][T1] init: Created socket '/dev/socket/property_service', mode 666,␣
→˓user 0, group 0
[0.401388][T1] init: [libfs_mgr] vendor overlay: vndk version not defined
[0.401890][T1] init: SetupMountNamespaces done
[0.402051][T1] init: Not using subcontext for microdroid
[0.402506][T1] init: Parsing file /system/etc/init/hw/init.rc...
[0.402947][T1] init: Added '/init.environ.rc' to import list
[0.403334][T1] init: Parsing file /init.environ.rc...
[0.403500][T1] init: Unable to read config file '/init.environ.rc': open()␣
→˓failed: No such file or directory

(...output truncated...)

[0.487280][T1] init: starting service 'microdroid_manager'...
[0.487467][T1] init: Created socket '/dev/socket/vm_payload_service', mode 666,␣
→˓user 1000, group 1000
[0.488369][T1] init: ... started service 'microdroid_manager' has pid 54
[0.488570][T49] ueventd: Coldboot took 0.041 seconds

(...output truncated...)

[0.550323][T54] microdroid_manager[54]: started.
[0.550495][T54] microdroid_manager[54]: ramdump supported: true
[0.550615][T54] microdroid_manager[54]: Os { code: 2, kind: NotFound, message:
→˓"No such file or directory" }. Assumes <0>

(...output truncated...)

[0.643333][T54] microdroid_manager[54]: ramdump is loaded: debuggable=true,␣
→˓ramdump=false
[0.643757][T54] zram0: detected capacity change from 0 to 454240
[0.643944][T54] Adding 227116k swap on /dev/block/zram0. Priority:-2 extents:1␣
→˓across:227116k SS
[0.644101][T54] microdroid_manager[54]: swap enabled.
[0.644248][T55] kexec_load (55) used greatest stack depth: 11968 bytes left
[0.645184][T54] microdroid_manager::payload[54]: loading payload metadata...
[0.645326][T54] microdroid_manager::ioutil[54]: waiting for "/dev/block/by-name/
→˓payload-metadata"...
[0.645526][T54] microdroid_manager::dice[54]: Using sample DICE values

(...output truncated...)

(continues on next page)

1.7. Expected test results 83

Total Compute

(continued from previous page)

[0.691145][T54] microdroid_manager[54]: payload verification successful. took 35.
→˓677936ms
[0.691307][T54] microdroid_manager[54]: Saved data is verified.
[0.691435][T54] microdroid_manager[54]: DICE derivation for payload
[0.698650][T54] microdroid_manager[54]: loading config from "/mnt/apk/assets/vm_
→˓config.json"...
[0.698819][T54] microdroid_manager::ioutil[54]: waiting for "/mnt/apk/assets/vm_
→˓config.json"...

(...output truncated...)

[0.809250][T54] microdroid_manager::vm_payload_service[54]: The RPC server 'vm_
→˓payload_service' is running.

(...output truncated...)

[0.817050][T54] microdroid_manager[54]: boot completed, time to run payload
[0.817176][T54] microdroid_manager[54]: executing main task Task { type_:␣
→˓MicrodroidLauncher, command: "TCMicrodroidApp.so" }...
[0.817391][T54] microdroid_manager[54]: notifying payload started
[0.817551][T1] init: processing action (enable_property_trigger) from (<Builtin␣
→˓Action>:0)
payload started
[0.818000][T1] init: processing action (microdroid_manager.init_done=1) from (/
→˓system/etc/init/hw/init.rc:49)
[0.818196][T1] init: Sending signal 9 to service 'ueventd' (pid 49) process␣
→˓group...
[0.818872][T1] libprocessgroup: Successfully killed process cgroup uid 0 pid 49␣
→˓in 0ms
[0.819032][T1] init: Service 'ueventd' (pid 49) received signal 9
[0.819238][T1] init: processing action (init_debug_policy.adbd.enabled=1) from (/
→˓system/etc/init/hw/init.rc:57)
[0.819539][T1] init: starting service 'adbd'...
[0.819637][T1] init: Created socket '/dev/socket/adbd', mode 660, user 1000,␣
→˓group 1000
[0.820284][T1] init: ... started service 'adbd' has pid 74
[0.820686][T73] microdroid_manager[73]: dropping capabilities before executing␣
→˓payload
[0.893050][T73] microdroid_launcher: Hello Microdroid!
[0.893130][T73] microdroid_launcher:
[0.893189][T73] microdroid_launcher:
[0.893552][T54] microdroid_manager[54]: task successfully finished
[0.893648][T54] microdroid_manager[54]: notifying payload finished
payload finished with exit code 0
[0.893841][T54] microdroid_manager[54]: Shutting down...
[0.894009][T48] init: Received sys.powerctl='shutdown' from pid: 54 (/system/bin/
→˓microdroid_manager)
[0.894193][T1] init: Got shutdown_command 'shutdown' Calling␣
→˓HandlePowerctlMessage()
[0.894317][T1] init: Clear action queue and start shutdown trigger
[0.894430][T1] init: Entering shutdown mode

(continues on next page)

84 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

(...output truncated...)

[2024-04-03T09:17:24.547673048+00:00 INFO crosvm] exiting with success
VM ended: Shutdown

(...output truncated...)

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.8 Kernel selftest unit tests

./run_kselftest.sh --summary
[520.082187][T177] kselftest: Running tests in arm64
TAP version 13
1..17
selftests: arm64: check_prctl
ok 1 selftests: arm64: check_prctl
selftests: arm64: check_gcr_el1_cswitch
ok 2 selftests: arm64: check_gcr_el1_cswitch
selftests: arm64: check_ksm_options
not ok 3 selftests: arm64: check_ksm_options # exit=1
selftests: arm64: check_tags_inclusion
ok 4 selftests: arm64: check_tags_inclusion
selftests: arm64: check_user_mem
ok 5 selftests: arm64: check_user_mem
selftests: arm64: check_mmap_options
ok 6 selftests: arm64: check_mmap_options
selftests: arm64: check_child_memory
ok 7 selftests: arm64: check_child_memory
selftests: arm64: check_buffer_fill
ok 8 selftests: arm64: check_buffer_fill
selftests: arm64: btitest
ok 9 selftests: arm64: btitest
selftests: arm64: nobtitest
ok 10 selftests: arm64: nobtitest
selftests: arm64: pac
ok 11 selftests: arm64: pac
selftests: arm64: fp-stress
ok 12 selftests: arm64: fp-stress
selftests: arm64: sve-ptrace
ok 13 selftests: arm64: sve-ptrace
selftests: arm64: sve-probe-vls
ok 14 selftests: arm64: sve-probe-vls
selftests: arm64: vec-syscfg
ok 15 selftests: arm64: vec-syscfg
selftests: arm64: za-fork
ok 16 selftests: arm64: za-fork

(continues on next page)

1.7. Expected test results 85

Total Compute

(continued from previous page)

selftests: arm64: za-ptrace
ok 17 selftests: arm64: za-ptrace
#

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.9 Rotational scheduler unit tests

test_rotational_scheduler.sh
Enable The Rotational Scheduler
Pass

Checking the value of max_latency_us
Pass

Checking the value of max_residency_us
Pass

Checking the value of min_residency_us
Pass

Checking the value of hysteresis_active_tick
Pass

#

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.10 MPAM unit tests

testing_mpam.sh
Testing the number of partitions supported. It should be 0-63
Pass

Partition 0 is the default partition to which all tasks will be assigned. Checking if␣
→˓task 1 is assigned to partition 0
Pass

Testing the number of bits required to set the cache portion bitmap. It should be 8
Pass

Testing the default cpbm configured in the DSU for all the partitions. It should be 0-7␣
→˓for all the partitions
[18748.735944][T491] MPAM_arch: PART_SEL: 0x0

(continues on next page)

86 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

Pass

Setting the cpbm 4-5 in DSU for partition 45 and reading it back
[18748.736091][T487] MPAM_arch: PART_SEL: 0x2d
[18748.736097][T487] MPAM_arch: CPBM: 0x30 @ffff800008963000
[18748.737773][T492] MPAM_arch: PART_SEL: 0x2d
Pass

#

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.11 MPMM unit tests

test_mpmm.sh tc3 fvp

Testing MPMM in FVP

Testing the MPMM of Cortex A520 cores

According to the PCT, the max frequency should be 2152000
Current set frequency of the cpu0 is 768000
PASS

Starting a vector intensive workload on cpu0
According to the PCT, the max frequency should be 2152000
Current set frequency of the cpu0 is 2152000
PASS

Starting a vector intensive workload on cpu1
According to the PCT, the max frequency should be 1844000
Current set frequency of the cpu0 is 1844000
PASS

Testing the MPMM of Cortex A725 cores

According to the PCT, the max frequency should be 2650000
Current set frequency of the cpu2 is 1893000
PASS

Starting a vector intensive workload on cpu2
According to the PCT, the max frequency should be 2271000
Current set frequency of the cpu2 is 2271000
PASS

Starting a vector intensive workload on cpu3
According to the PCT, the max frequency should be 1893000
Current set frequency of the cpu2 is 1893000

(continues on next page)

1.7. Expected test results 87

Total Compute

(continued from previous page)

PASS

Starting a vector intensive workload on cpu4
According to the PCT, the max frequency should be 1419000
Current set frequency of the cpu2 is 1419000
PASS

Starting a vector intensive workload on cpu5
According to the PCT, the max frequency should be 1419000
Current set frequency of the cpu2 is 1419000
PASS

Testing the MPMM of Cortex X925 cores

According to the PCT, the max frequency should be 3047000
Current set frequency of the cpu6 is 3047000
PASS

Starting a vector intensive workload on cpu6
According to the PCT, the max frequency should be 2612000
Current set frequency of the cpu6 is 2176000
PASS

Starting a vector intensive workload on cpu7
According to the PCT, the max frequency should be 2176000
Current set frequency of the cpu6 is 2176000
PASS
#

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.12 BTI unit tests

console:/data/nativetest64/bti-unit-tests # ./bti-unit-tests

[==========] Running 17 tests from 7 test suites.
[----------] Global test environment set-up.
[----------] 3 tests from BR_Test
[RUN] BR_Test.GuardedMemoryWithX16OrX17
[OK] BR_Test.GuardedMemoryWithX16OrX17 (206 ms)
[RUN] BR_Test.NonGuardedMemoryAnyRegister
[OK] BR_Test.NonGuardedMemoryAnyRegister (0 ms)
[RUN] BR_Test.GuardedMemoryOtherRegisters
[OK] BR_Test.GuardedMemoryOtherRegisters (155 ms)
[----------] 3 tests from BR_Test (362 ms total)

[----------] 3 tests from BRAA_Test
[RUN] BRAA_Test.GuardedMemoryWithX16OrX17

(continues on next page)

88 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

[OK] BRAA_Test.GuardedMemoryWithX16OrX17 (429 ms)
[RUN] BRAA_Test.NonGuardedMemoryAnyRegister
[OK] BRAA_Test.NonGuardedMemoryAnyRegister (0 ms)
[RUN] BRAA_Test.GuardedMemoryOtherRegisters
[OK] BRAA_Test.GuardedMemoryOtherRegisters (283 ms)
[----------] 3 tests from BRAA_Test (713 ms total)

[----------] 3 tests from BRAB_Test
[RUN] BRAB_Test.GuardedMemoryWithX16OrX17
[OK] BRAB_Test.GuardedMemoryWithX16OrX17 (385 ms)
[RUN] BRAB_Test.NonGuardedMemoryAnyRegister
[OK] BRAB_Test.NonGuardedMemoryAnyRegister (0 ms)
[RUN] BRAB_Test.GuardedMemoryOtherRegisters
[OK] BRAB_Test.GuardedMemoryOtherRegisters (297 ms)
[----------] 3 tests from BRAB_Test (682 ms total)

[----------] 2 tests from BLR_Test
[RUN] BLR_Test.GuardedMemoryAnyRegister
[OK] BLR_Test.GuardedMemoryAnyRegister (427 ms)
[RUN] BLR_Test.NonGuardedMemoryAnyRegister
[OK] BLR_Test.NonGuardedMemoryAnyRegister (0 ms)
[----------] 2 tests from BLR_Test (427 ms total)

[----------] 2 tests from BLRAA_Test
[RUN] BLRAA_Test.GuardedMemoryAnyRegister
[OK] BLRAA_Test.GuardedMemoryAnyRegister (936 ms)
[RUN] BLRAA_Test.NonGuardedMemoryAnyRegister
[OK] BLRAA_Test.NonGuardedMemoryAnyRegister (0 ms)
[----------] 2 tests from BLRAA_Test (937 ms total)

[----------] 2 tests from BLRAB_Test
[RUN] BLRAB_Test.GuardedMemoryAnyRegister
[OK] BLRAB_Test.GuardedMemoryAnyRegister (749 ms)
[RUN] BLRAB_Test.NonGuardedMemoryAnyRegister
[OK] BLRAB_Test.NonGuardedMemoryAnyRegister (0 ms)
[----------] 2 tests from BLRAB_Test (749 ms total)

[----------] 2 tests from BTI_LinkerTest
[RUN] BTI_LinkerTest.CallBasicFunction
[OK] BTI_LinkerTest.CallBasicFunction (0 ms)
[RUN] BTI_LinkerTest.BypassLandingPad
[OK] BTI_LinkerTest.BypassLandingPad (55 ms)
[----------] 2 tests from BTI_LinkerTest (55 ms total)

[----------] Global test environment tear-down
[==========] 17 tests from 7 test suites ran. (3929 ms total)
[PASSED] 17 tests.

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7. Expected test results 89

Total Compute

1.7.13 MTE unit tests

console:/data/nativetest64/mte-unit-tests # ./mte-unit-tests

[==========] Running 12 tests from 1 test suite.
[----------] Global test environment set-up.
[----------] 12 tests from MTETest
[RUN] MTETest.CreateRandomTag
[OK] MTETest.CreateRandomTag (0 ms)
[RUN] MTETest.IncrementTag
[OK] MTETest.IncrementTag (0 ms)
[RUN] MTETest.ExcludedTags
[OK] MTETest.ExcludedTags (0 ms)
[RUN] MTETest.PointerSubtraction
[OK] MTETest.PointerSubtraction (0 ms)
[RUN] MTETest.TagStoreAndLoad
[OK] MTETest.TagStoreAndLoad (0 ms)
[RUN] MTETest.DCGZVA
[OK] MTETest.DCGZVA (0 ms)
[RUN] MTETest.DCGVA
[OK] MTETest.DCGVA (0 ms)
[RUN] MTETest.Segfault
[OK] MTETest.Segfault (41 ms)
[RUN] MTETest.UseAfterFree
[OK] MTETest.UseAfterFree (0 ms)
[RUN] MTETest.CopyOnWrite
[OK] MTETest.CopyOnWrite (0 ms)
[RUN] MTETest.mmapTempfile
[OK] MTETest.mmapTempfile (5 ms)
[RUN] MTETest.MTEIsEnabled
[OK] MTETest.MTEIsEnabled (0 ms)
[----------] 12 tests from MTETest (48 ms total)

[----------] Global test environment tear-down
[==========] 12 tests from 1 test suite ran. (48 ms total)
[PASSED] 12 tests.

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.14 PAUTH unit tests

console:/data/nativetest64/pauth-unit-tests $./pauth-unit-tests
PAC is enabled by the kernel: 1
PAC2 is implemented by the hardware: 1
FPAC is implemented by the hardware: 1
[==========] Running 21 tests from 3 test suites.
[----------] Global test environment set-up.
[----------] 3 tests from PAuthDeathTest
[RUN] PAuthDeathTest.SignFailure

(continues on next page)

90 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

[OK] PAuthDeathTest.SignFailure (431 ms)
[RUN] PAuthDeathTest.AuthFailureNoFpac
vendor/arm/examples/pauth/pauth_unit_tests/pauth_unit_tests.cpp:598: Skipped

[SKIPPED] PAuthDeathTest.AuthFailureNoFpac (0 ms)
[RUN] PAuthDeathTest.AuthFailureFpac
[OK] PAuthDeathTest.AuthFailureFpac (411 ms)
[----------] 3 tests from PAuthDeathTest (842 ms total)

[----------] 14 tests from PAuthTest
[RUN] PAuthTest.Signing
[OK] PAuthTest.Signing (0 ms)
[RUN] PAuthTest.AuthenticationFpac
[OK] PAuthTest.AuthenticationFpac (494 ms)
[RUN] PAuthTest.AuthenticationNoFpac
vendor/arm/examples/pauth/pauth_unit_tests/pauth_unit_tests.cpp:225: Skipped

[SKIPPED] PAuthTest.AuthenticationNoFpac (0 ms)
[RUN] PAuthTest.Stripping
vendor/arm/examples/pauth/pauth_unit_tests/pauth_unit_tests.cpp:269: Skipped

[SKIPPED] PAuthTest.Stripping (0 ms)
[RUN] PAuthTest.Roundtrip
[OK] PAuthTest.Roundtrip (0 ms)
[RUN] PAuthTest.StrippingWithBuiltinReturnAddress
[OK] PAuthTest.StrippingWithBuiltinReturnAddress (0 ms)
[RUN] PAuthTest.ExtractPAC
[OK] PAuthTest.ExtractPAC (0 ms)
[RUN] PAuthTest.PACMask
[OK] PAuthTest.PACMask (0 ms)
[RUN] PAuthTest.KeyChange
[OK] PAuthTest.KeyChange (1 ms)
[RUN] PAuthTest.GenericAuthentication
[OK] PAuthTest.GenericAuthentication (0 ms)
[RUN] PAuthTest.Unwind
[OK] PAuthTest.Unwind (50 ms)
[RUN] PAuthTest.CheckReturnAddressSigned
[OK] PAuthTest.CheckReturnAddressSigned (0 ms)
[RUN] PAuthTest.AuthenticateThenReturn
[OK] PAuthTest.AuthenticateThenReturn (196 ms)
[RUN] PAuthTest.CheckHWCAP
[OK] PAuthTest.CheckHWCAP (0 ms)
[----------] 14 tests from PAuthTest (743 ms total)

[----------] 4 tests from PAuthTestData
[RUN] PAuthTestData.Signing
[OK] PAuthTestData.Signing (0 ms)
[RUN] PAuthTestData.AuthenticationFpac
[OK] PAuthTestData.AuthenticationFpac (197 ms)
[RUN] PAuthTestData.AuthenticationNoFpac
vendor/arm/examples/pauth/pauth_unit_tests/pauth_unit_tests.cpp:257: Skipped

(continues on next page)

1.7. Expected test results 91

Total Compute

(continued from previous page)

[SKIPPED] PAuthTestData.AuthenticationNoFpac (0 ms)
[RUN] PAuthTestData.Roundtrip
[OK] PAuthTestData.Roundtrip (0 ms)
[----------] 4 tests from PAuthTestData (197 ms total)

[----------] Global test environment tear-down
[==========] 21 tests from 3 test suites ran. (1784 ms total)
[PASSED] 17 tests.
[SKIPPED] 4 tests, listed below:
[SKIPPED] PAuthDeathTest.AuthFailureNoFpac
[SKIPPED] PAuthTest.AuthenticationNoFpac
[SKIPPED] PAuthTest.Stripping
[SKIPPED] PAuthTestData.AuthenticationNoFpac

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.15 EAS with Lisa unit tests

The following expressions will be executed:

EnergyModelWakeMigration:test_dmesg
EnergyModelWakeMigration:test_slack
EnergyModelWakeMigration:test_task_placement
OneSmallTask:test_dmesg
OneSmallTask:test_slack
OneSmallTask:test_task_placement
RampDown:test_dmesg
RampDown:test_slack
RampDown:test_task_placement
RampUp:test_dmesg
RampUp:test_slack
RampUp:test_task_placement
ThreeSmallTasks:test_dmesg
ThreeSmallTasks:test_slack
ThreeSmallTasks:test_task_placement
TwoBigTasks:test_dmesg
TwoBigTasks:test_slack
TwoBigTasks:test_task_placement
TwoBigThreeSmall:test_dmesg
TwoBigThreeSmall:test_slack
TwoBigThreeSmall:test_task_placement

Used trace events:
- sched_switch
- sched_wakeup
- sched_wakeup_new
- task_rename
- userspace@rtapp_loop

(continues on next page)

92 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

- userspace@rtapp_stats

(...output truncated...)

[2024-04-09 08:13:33,473][EXEKALL] INFO Result summary:
EnergyModelWakeMigration[board=tc]:test_dmesg ␣
→˓UUID=4dd0d0a7269e4fdc9be62a622f21f5b5 PASSED: dmesg output:
EnergyModelWakeMigration[board=tc]:test_slack ␣
→˓UUID=e415d484124149479d4615981e94038a PASSED

emwm_0-0 delayed activations: 1.7964071856287425 %
emwm_1-1 delayed activations: 1.596806387225549 %

EnergyModelWakeMigration[board=tc]:test_task_placement␣
→˓UUID=27db420e26604de4b5eb93b5f7f415c4 PASSED

energy threshold: 9917896.808890518 bogo-joules
estimated energy: 9494907.774697093 bogo-joules
noisiest task:

comm: kworker/7:2
duration (abs): 0.0005616000271402299 s
duration (rel): 0.006970336884132867 %
pid: 86

OneSmallTask[board=tc]:test_dmesg ␣
→˓UUID=e403fdd6beef422288d9702265c568e8 PASSED: dmesg output:
OneSmallTask[board=tc]:test_slack ␣
→˓UUID=35c9f262e8fe4f2abd6f2efc7f8ab3dc PASSED: small-0 delayed activations: 0.0 %
OneSmallTask[board=tc]:test_task_placement ␣
→˓UUID=ad6bbe0e724e4c918c24651b283d0c58 PASSED

energy threshold: 47367.4972158616 bogo-joules
estimated energy: 45111.90211034438 bogo-joules
noisiest task:

comm: kworker/7:2
duration (abs): 7.127999560907483e-05 s
duration (rel): 0.00718544356093443 %
pid: 86

RampDown[board=tc]:test_dmesg ␣
→˓UUID=9e0eefb9240740ffaddec5a2079faa0c PASSED: dmesg output:
RampDown[board=tc]:test_slack ␣
→˓UUID=a3290caf3e9948ea9faf66581ce24cdb PASSED: down-0 delayed activations: 0.0 %
RampDown[board=tc]:test_task_placement ␣
→˓UUID=cec7149293f64823a57e1a3bbd3c7c22 PASSED

energy threshold: 3254207.3701920374 bogo-joules
estimated energy: 2724142.579732631 bogo-joules
noisiest task:

comm: kworker/7:2
duration (abs): 0.00039719196502119303 s
duration (rel): 0.0066732320449603404 %
pid: 86

RampUp[board=tc]:test_dmesg ␣
→˓UUID=467a049c6bcf41fdad6af63165332e64 PASSED: dmesg output:

(continues on next page)

1.7. Expected test results 93

Total Compute

(continued from previous page)

RampUp[board=tc]:test_slack ␣
→˓UUID=349a857829c34c79a949b402bd4fd903 PASSED: up-0 delayed activations: 0.
→˓2680965147453083 %
RampUp[board=tc]:test_task_placement ␣
→˓UUID=40f9064f78a049aa9ac471318887ed91 PASSED

energy threshold: 2929607.402691307 bogo-joules
estimated energy: 2590048.4205345856 bogo-joules
noisiest task:

comm: kworker/7:2
duration (abs): 0.0004323198809288442 s
duration (rel): 0.007262193744866007 %
pid: 86

ThreeSmallTasks[board=tc]:test_dmesg ␣
→˓UUID=f254d321ef294e0ba6e2135474173a18 PASSED: dmesg output:
ThreeSmallTasks[board=tc]:test_slack ␣
→˓UUID=89e4ba29744c405c8500971607adea94 PASSED

small_0-0 delayed activations: 0.0 %
small_1-1 delayed activations: 0.0 %
small_2-2 delayed activations: 0.0 %

ThreeSmallTasks[board=tc]:test_task_placement ␣
→˓UUID=445dd167367f4e6db82a563c271c8f8d PASSED

energy threshold: 162402.8567740885 bogo-joules
estimated energy: 136972.06192055883 bogo-joules
noisiest task:

comm: kworker/7:2
duration (abs): 7.199199171736836e-05 s
duration (rel): 0.007257161247512859 %
pid: 86

TwoBigTasks[board=tc]:test_dmesg ␣
→˓UUID=adbb1ada47084815af6ca34c66564bc7 PASSED: dmesg output:
TwoBigTasks[board=tc]:test_slack ␣
→˓UUID=987995ebef644717b95348deca1df879 PASSED

big_0-0 delayed activations: 3.1746031746031744 %
big_1-1 delayed activations: 4.761904761904762 %

TwoBigTasks[board=tc]:test_task_placement ␣
→˓UUID=56dfbebc469e49f995a7c65b4eb7779c PASSED

energy threshold: 2389919.2425884334 bogo-joules
estimated energy: 2336061.2754204613 bogo-joules
noisiest task:

comm: init
duration (abs): 0.00018922402523458004 s
duration (rel): 0.01868509877871718 %
pid: 1

TwoBigThreeSmall[board=tc]:test_dmesg ␣
→˓UUID=db563f87f9cf4803b405cbb6414e9322 PASSED: dmesg output:
TwoBigThreeSmall[board=tc]:test_slack ␣
→˓UUID=e8809db1a86045b99ad30c031f5c0e2a PASSED

(continues on next page)

94 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

big_0-0 delayed activations: 4.838709677419355 %
big_1-1 delayed activations: 6.349206349206349 %
small_0-2 delayed activations: 0.0 %
small_1-3 delayed activations: 0.0 %
small_2-4 delayed activations: 0.0 %

TwoBigThreeSmall[board=tc]:test_task_placement ␣
→˓UUID=17fc2798916b4b1f9dae399c20dd3e63 FAILED

energy threshold: 2472495.7617728077 bogo-joules
estimated energy: 2699550.767562539 bogo-joules
noisiest task:

comm: sshd
duration (abs): 0.00029410398565232754 s
duration (rel): 0.029381488120311203 %
pid: 175

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.16 CPU hardware capabilities

test_feats_arch.sh
Testing FEAT_AFP HW CAP
Pass

Testing FEAT_ECV HW CAP
Pass

Testing FEAT_WFXT HW CAP
Pass

#

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.17 GPU GLES Integration tests

console:/data/nativetest/unrestricted # ./mali_gles_integration_suite

===
Mali GLES integration tests

===

===
(continues on next page)

1.7. Expected test results 95

Total Compute

(continued from previous page)

UTF: Platform Provenance
===

Hardware: TDRX r0p0
OS: Android

===
UTF: Running gles1_api_integration
===

Initializing: S:{gles1_api_integration} T:{Triangles [0x0001]} D:{0}
System time: Fri Aug 2 20:49:38 2024
[8754.400713][T179] servicemanager: Found android.hardware.graphics.allocator.
→˓IAllocator/default in device VINTF manifest.
[8754.401104][T179] servicemanager: Found android.hardware.graphics.allocator.
→˓IAllocator/default in device VINTF manifest.
Running: S:{gles1_api_integration} T:{Triangles [0x0001]} D:{0}
Terminating: S:{gles1_api_integration} T:{Triangles [0x0001]} D:{0}
Pass: S:{gles1_api_integration} T:{Triangles [0x0001]} F:{ [0x00]} D:{662} - (implicit␣
→˓pass)
Initializing: S:{gles1_api_integration} T:{glGetString [0x0002]} D:{0}
System time: Fri Aug 2 20:49:39 2024
Running: S:{gles1_api_integration} T:{glGetString [0x0002]} D:{0}
Terminating: S:{gles1_api_integration} T:{glGetString [0x0002]} D:{0}
Pass: S:{gles1_api_integration} T:{glGetString [0x0002]} F:{ [0x00]} D:{268} - (implicit␣
→˓pass)
Initializing: S:{gles1_api_integration} T:{gcc49_format_conversion [0x0003]} D:{0}
System time: Fri Aug 2 20:49:39 2024
Running: S:{gles1_api_integration} T:{gcc49_format_conversion [0x0003]} D:{0}
Terminating: S:{gles1_api_integration} T:{gcc49_format_conversion [0x0003]} D:{0}
Pass: S:{gles1_api_integration} T:{gcc49_format_conversion [0x0003]} F:{ [0x00]} D:{157}␣
→˓- (implicit pass)
Initializing: S:{gles1_api_integration} T:{gcc49_memory_allocation [0x0004]} D:{0}
System time: Fri Aug 2 20:49:39 2024
Running: S:{gles1_api_integration} T:{gcc49_memory_allocation [0x0004]} D:{0}
Terminating: S:{gles1_api_integration} T:{gcc49_memory_allocation [0x0004]} D:{0}
Pass: S:{gles1_api_integration} T:{gcc49_memory_allocation [0x0004]} F:{ [0x00]} D:{140}␣
→˓- (implicit pass)
===
UTF: Running gles2_api_integration
===
Initializing: S:{gles2_api_integration} T:{glGetString [0x0001]} D:{0}
System time: Fri Aug 2 20:49:39 2024
Running: S:{gles2_api_integration} T:{glGetString [0x0001]} D:{0}
Terminating: S:{gles2_api_integration} T:{glGetString [0x0001]} D:{0}
Pass: S:{gles2_api_integration} T:{glGetString [0x0001]} F:{ [0x00]} D:{225} - (implicit␣
→˓pass)
Initializing: S:{gles2_api_integration} T:{glClearColor_basic [0x0002]} D:{0}
System time: Fri Aug 2 20:49:40 2024
Running: S:{gles2_api_integration} T:{glClearColor_basic [0x0002]} D:{0}
Terminating: S:{gles2_api_integration} T:{glClearColor_basic [0x0002]} D:{0}
Pass: S:{gles2_api_integration} T:{glClearColor_basic [0x0002]} F:{ [0x00]} D:{476} -␣
→˓(implicit pass)

(continues on next page)

96 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

Initializing: S:{gles2_api_integration} T:{glLinkProgram [0x0003]} D:{0}
System time: Fri Aug 2 20:49:40 2024
Running: S:{gles2_api_integration} T:{glLinkProgram [0x0003]} D:{0}
Terminating: S:{gles2_api_integration} T:{glLinkProgram [0x0003]} D:{0}
Pass: S:{gles2_api_integration} T:{glLinkProgram [0x0003]} F:{ [0x00]} D:{167} -␣
→˓(implicit pass)
Initializing: S:{gles2_api_integration} T:{untextured triangle [0x0004]} D:{0}
System time: Fri Aug 2 20:49:40 2024
Running: S:{gles2_api_integration} T:{untextured triangle [0x0004]} D:{0}
Terminating: S:{gles2_api_integration} T:{untextured triangle [0x0004]} D:{0}
Pass: S:{gles2_api_integration} T:{untextured triangle [0x0004]} F:{ [0x00]} D:{396} -␣
→˓(implicit pass)
Initializing: S:{gles2_api_integration} T:{textured triangle [0x0005]} D:{0}
System time: Fri Aug 2 20:49:41 2024
Running: S:{gles2_api_integration} T:{textured triangle [0x0005]} D:{0}
Terminating: S:{gles2_api_integration} T:{textured triangle [0x0005]} D:{0}
Pass: S:{gles2_api_integration} T:{textured triangle [0x0005]} F:{ [0x00]} D:{432} -␣
→˓(implicit pass)
Initializing: S:{gles2_api_integration} T:{untextured triangle one ibo with diff types␣
→˓[0x0006]} D:{0}
System time: Fri Aug 2 20:49:41 2024
Running: S:{gles2_api_integration} T:{untextured triangle one ibo with diff types␣
→˓[0x0006]} D:{0}
Terminating: S:{gles2_api_integration} T:{untextured triangle one ibo with diff types␣
→˓[0x0006]} D:{0}
Pass: S:{gles2_api_integration} T:{untextured triangle one ibo with diff types [0x0006]}␣
→˓F:{ [0x00]} D:{467} - (implicit pass)
Initializing: S:{gles2_api_integration} T:{HW SHA1 crypto extension [0x0007]} D:{0}
System time: Fri Aug 2 20:49:42 2024
Running: S:{gles2_api_integration} T:{HW SHA1 crypto extension [0x0007]} D:{0}
Terminating: S:{gles2_api_integration} T:{HW SHA1 crypto extension [0x0007]} D:{0}
===
UTF: Running gles2_api_integration_large_fbo
===
Initializing: S:{gles2_api_integration_large_fbo} T:{glReadPixels_partial [0x0001]} D:{0}
System time: Fri Aug 2 20:49:42 2024
Running: S:{gles2_api_integration_large_fbo} T:{glReadPixels_partial [0x0001]} D:{0}
Terminating: S:{gles2_api_integration_large_fbo} T:{glReadPixels_partial [0x0001]} D:{0}
Pass: S:{gles2_api_integration_large_fbo} T:{glReadPixels_partial [0x0001]} F:{ [0x00]}␣
→˓D:{406} - (implicit pass)
===
UTF: Running gles3_api_integration
===

(output trancated)

===
UTF: Result Summary
===
All assertions passed

21 tests considered

(continues on next page)

1.7. Expected test results 97

Total Compute

(continued from previous page)

20 tests passed
1 tests skipped
0 tests expected to fail
0 tests failed

All 6 suites passed

Run time 0m 8s
===
console:/data/nativetest/unrestricted #

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

1.7.18 GPU EGL Integration tests

console:/data/nativetest/unrestricted # ./mali_egl_integration_tests

===
UTF: Platform Provenance
===

Hardware: TDRX r0p0
OS: Android

===
UTF: Running egl_surface_suite
===
Initializing: S:{egl_surface_suite} T:{surface_eglCreateWindowSurface_defaults [0x0000]}␣
→˓D:{0}
[99.932162][T173] servicemanager: Found android.hardware.graphics.allocator.
→˓IAllocator/default in device VINTF manifest.
[99.932458][T173] servicemanager: Found android.hardware.graphics.allocator.
→˓IAllocator/default in device VINTF manifest.
Running: S:{egl_surface_suite} T:{surface_eglCreateWindowSurface_defaults [0x0000]} D:{0}
Terminating: S:{egl_surface_suite} T:{surface_eglCreateWindowSurface_defaults [0x0000]}␣
→˓D:{0}
Pass: S:{egl_surface_suite} T:{surface_eglCreateWindowSurface_defaults [0x0000]} F:{␣
→˓[0x00]} D:{256} - (implicit pass)
Initializing: S:{egl_surface_suite} T:{surface_drawing_to_window_surface_with_GLES␣
→˓[0x0001]} D:{0}
Running: S:{egl_surface_suite} T:{surface_drawing_to_window_surface_with_GLES [0x0001]}␣
→˓D:{0}
[230.164353][T184] type=1400 audit(1712332638.569:611): avc: denied { getattr }␣
→˓for comm="RenderEngine" name="/" dev="dmabuf" ino=1 scontext=u:r:surfaceflinger:s0␣
→˓tcontext=u:object_r:unlabeled:s0 tclass=filesystem permissive=1
Terminating: S:{egl_surface_suite} T:{surface_drawing_to_window_surface_with_GLES␣
→˓[0x0001]} D:{0}
Pass: S:{egl_surface_suite} T:{surface_drawing_to_window_surface_with_GLES [0x0001]} F:{␣
→˓[0x00]} D:{142255} - (implicit pass) (continues on next page)

98 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

Initializing: S:{egl_surface_suite} T:{surface_drawing_to_pbuffer_surface_with_GLES␣
→˓[0x0002]} D:{0}
Running: S:{egl_surface_suite} T:{surface_drawing_to_pbuffer_surface_with_GLES [0x0002]}␣
→˓D:{0}
Terminating: S:{egl_surface_suite} T:{surface_drawing_to_pbuffer_surface_with_GLES␣
→˓[0x0002]} D:{0}
Pass: S:{egl_surface_suite} T:{surface_drawing_to_pbuffer_surface_with_GLES [0x0002]} F:
→˓{ [0x00]} D:{39324} - (implicit pass)
Initializing: S:{egl_surface_suite} T:{surface_drawing_to_pbuffer_surface_with_GLES_
→˓16bit_config [0x0003]} D:{0}
Running: S:{egl_surface_suite} T:{surface_drawing_to_pbuffer_surface_with_GLES_16bit_
→˓config [0x0003]} D:{0}
Terminating: S:{egl_surface_suite} T:{surface_drawing_to_pbuffer_surface_with_GLES_16bit_
→˓config [0x0003]} D:{0}
Pass: S:{egl_surface_suite} T:{surface_drawing_to_pbuffer_surface_with_GLES_16bit_config␣
→˓[0x0003]} F:{ [0x00]} D:{1699} - (implicit pass)
Initializing: S:{egl_surface_suite} T:{surface_drawing_to_window_surface_with_GLES3_
→˓context [0x0004]} D:{0}
Running: S:{egl_surface_suite} T:{surface_drawing_to_window_surface_with_GLES3_context␣
→˓[0x0004]} D:{0}
Terminating: S:{egl_surface_suite} T:{surface_drawing_to_window_surface_with_GLES3_
→˓context [0x0004]} D:{0}
Pass: S:{egl_surface_suite} T:{surface_drawing_to_window_surface_with_GLES3_context␣
→˓[0x0004]} F:{ [0x00]} D:{152582} - (implicit pass)
Initializing: S:{egl_surface_suite} T:{surface_stability_simple_content_nonfs [0x0005]}␣
→˓D:{0}
Running: S:{egl_surface_suite} T:{surface_stability_simple_content_nonfs [0x0005]} D:{0}
surface_stability_simple_content: Swapped 8 frames in 5654331408 nanosecs (1.415 fps)
surface_stability_simple_content: Swapped 7 frames in 6200350568 nanosecs (1.129 fps)
surface_stability_simple_content: Swapped 5 frames in 5483275000 nanosecs (0.912 fps)
surface_stability_simple_content: Swapped 6 frames in 6126052032 nanosecs (0.979 fps)
surface_stability_simple_content: Swapped 6 frames in 5480066528 nanosecs (1.095 fps)
surface_stability_simple_content: Total swapped 33 frames in 30079161696 nanosecs (1.097␣
→˓fps)
Terminating: S:{egl_surface_suite} T:{surface_stability_simple_content_nonfs [0x0005]} D:
→˓{0}
Pass: S:{egl_surface_suite} T:{surface_stability_simple_content_nonfs [0x0005]} F:{␣
→˓[0x00]} D:{31180} - (implicit pass)
Initializing: S:{egl_surface_suite} T:{surface_stability_simple_content_fs [0x0006]} D:
→˓{0}
Running: S:{egl_surface_suite} T:{surface_stability_simple_content_fs [0x0006]} D:{0}
surface_stability_simple_content: Swapped 30 frames in 5035421000 nanosecs (5.958 fps)
surface_stability_simple_content: Swapped 28 frames in 5051054472 nanosecs (5.543 fps)
surface_stability_simple_content: Swapped 29 frames in 5011064568 nanosecs (5.787 fps)
surface_stability_simple_content: Swapped 29 frames in 5142590568 nanosecs (5.639 fps)
surface_stability_simple_content: Swapped 28 frames in 5050210456 nanosecs (5.544 fps)
surface_stability_simple_content: Total swapped 171 frames in 30067253608 nanosecs (5.
→˓687 fps)
Terminating: S:{egl_surface_suite} T:{surface_stability_simple_content_fs [0x0006]} D:{0}
Pass: S:{egl_surface_suite} T:{surface_stability_simple_content_fs [0x0006]} F:{ [0x00]}␣
→˓D:{30976} - (implicit pass)
Initializing: S:{egl_surface_suite} T:{surface_stability_simple_content_nonfs_checked␣
→˓[0x0007]} D:{0} (continues on next page)

1.7. Expected test results 99

Total Compute

(continued from previous page)

Running: S:{egl_surface_suite} T:{surface_stability_simple_content_nonfs_checked␣
→˓[0x0007]} D:{0}
surface_stability_simple_content: Total swapped 239 frames in 300293819600 nanosecs (0.
→˓796 fps)
Terminating: S:{egl_surface_suite} T:{surface_stability_simple_content_nonfs_checked␣
→˓[0x0007]} D:{0}
Pass: S:{egl_surface_suite} T:{surface_stability_simple_content_nonfs_checked [0x0007]}␣
→˓F:{ [0x00]} D:{301339} - (implicit pass)
Initializing: S:{egl_surface_suite} T:{surface_stability_simple_content_fs_checked␣
→˓[0x0008]} D:{0}
Running: S:{egl_surface_suite} T:{surface_stability_simple_content_fs_checked [0x0008]}␣
→˓D:{0}
surface_stability_simple_content: Total swapped 270 frames in 301065171768 nanosecs (0.
→˓897 fps)
Terminating: S:{egl_surface_suite} T:{surface_stability_simple_content_fs_checked␣
→˓[0x0008]} D:{0}
Pass: S:{egl_surface_suite} T:{surface_stability_simple_content_fs_checked [0x0008]} F:{␣
→˓[0x00]} D:{302138} - (implicit pass)
Initializing: S:{egl_surface_suite} T:{surface_drawing_to_pixmap_surface_with_GLES␣
→˓[0x0009]} D:{0}
Running: S:{egl_surface_suite} T:{surface_drawing_to_pixmap_surface_with_GLES [0x0009]}␣
→˓D:{0}
Terminating: S:{egl_surface_suite} T:{surface_drawing_to_pixmap_surface_with_GLES␣
→˓[0x0009]} D:{0}
Initializing: S:{egl_surface_suite} T:{surface_yuv_android_recordable [0x000a]} D:{0}
Running: S:{egl_surface_suite} T:{surface_yuv_android_recordable [0x000a]} D:{0}
Testing MALI_TPI_FORMAT_YV12_BT601_NARROW
Testing MALI_TPI_FORMAT_YV12_BT601_WIDE
Testing MALI_TPI_FORMAT_YV12_BT709_NARROW
Testing MALI_TPI_FORMAT_YV12_BT709_WIDE
(...)

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User
Guide - Running sanity tests document section.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.8 Troubleshooting: common problems and solutions

This section provides a list of potential solutions to the most common problems experienced by developers and related
with the host development environment. This list is not intended to be an exhaustive list, especially due to the unpre-
dictability and nature of some problems. The developer is, therefore, strongly encouraged to read and search for more
information regarding the problem and any additional solutions (covered or not in this document).

Contents

• Troubleshooting: common problems and solutions

100 Chapter 1. Total Compute: TC23.1

Total Compute

– Docker

∗ Error message: Cannot Connect to a Docker Daemon

∗ Error message: transport: dial unix /var/run/docker/containerd/
docker-containerd.sock: connect: connection refused

1.8.1 Docker

Error message: Cannot Connect to a Docker Daemon

Solution: Ensure docker service is running, correct permissions and user group membership are properly configured
(please refer to User Guide - prerequisites document section).

Error message: transport: dial unix /var/run/docker/containerd/docker-containerd.sock:
connect: connection refused

Solution: Restart docker service running following command: sudo systemctl restart docker.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.9 Release notes - TC23.1

Contents

• Release notes - TC23.1

– Release tag

– Platform Support

– Components

– Hardware Features

– Software Features

– Tools Support

– Optimizations

∗ U-Boot boot time optimization

– Limitations

∗ Development Host OS Support

– Known issues

– Support

1.9. Release notes - TC23.1 101

Total Compute

1.9.1 Release tag

The manifest tag for this release is TC23.1.

1.9.2 Platform Support

• This software release is tested on TC3 Fixed Virtual Platform (FVP) version 11.26.16.

1.9.3 Components

The following is a summary of the key components of the release:

• Board Support Package (BSP) build supporting Android, Buildroot and Debian distros;

• Trusted firmware-A for secure boot;

• U-Boot bootloader;

• Hafnium for S-EL2 Secure Partition Manager core;

• OP-TEE for Trusted Execution Environment (TEE) in Buildroot;

• Trusted Services (Crypto and Internal Trusted Storage) in Buildroot;

• Trusty for Trusted Execution Environment (TEE) with FF-A messaging in Android;

• System Control Processor (SCP) firmware for programming the interconnect, power control, and so on;

• Runtime Security Engine (RSE) - previously known as Runtime Security SubSystem (RSS) - firmware for
providing hardware Root-of-Trust (RoT);

• TensorFlow Lite Machine Learning.

1.9.4 Hardware Features

This software release provides the following high-level hardware features:

• Arm® Tower MCN and NCI Interconnect with Memory Tagging Unit (MTU) support driver in SCP
firmware;

• Arm® CoreLink™ GIC-700 Generic Interrupt Controller in Trusted Firmware-A;

• Mali-G725 GPU;

• Arm® Mali™-D71 Display Processor and virtual encoder support for display on Linux;

• MHUv3 Driver for SCP and Application Processor (AP) communication;

• UARTs, Timers, Flash, Clock drivers, CCSM (Clock Control State Machine);

• PL180 MMC;

• DynamIQ Shared Unit (DSU) with 8 cores (2x Cortex-X925 + 4x Cortex-A725 + 2x Cortex-A520 cores
configuration);

• Cortex®-M55-based Runtime Security Engine (RSE);

• Cortex®-M85-based System Control Processor (SCP).

102 Chapter 1. Total Compute: TC23.1

Total Compute

1.9.5 Software Features

• Buildroot distribution support;

• Debian 12 (aka Bookworm);

• Android 14 and Android 13 support;

• Android Common Kernel 6.1.25;

• Android Kernel is built with Bazel (instead of Make) which is referred to Kleaf;

• Android Hardware Rendering with Mali-G725 GPU - DDK r49p0_00eac0 (source code or prebuilt binaries);

• Android Software rendering with DRM Hardware Composer offloading composition to Mali D71 DPU;

• Arm implementation for Hardware Composer 3 is used for Android Hardware Rendering with Mali-G725 GPU
- DDK r49p0_00eac0 (source code or prebuilt binaries);

• Hardware Graphics Composer 3 Ranchu is used for Software Rendering (implementation is tweaked);

• KVM default mode of operation is set to protected by default, thus effectively enabling pKVM on the system.
This is a nVHE based mode with kernel running at EL1;

• Microdroid based pVM support in Android;

• ADB connection from host machine to protected VM Microdroid;

• GPU and DPU support for S1 and S2 translation squashed with SMMU-700;

• Maximum Power Mitigation Mechanism (MPMM) support;

• GPU Dynamic Voltage Frequency Scaling (DVFS)/Idle power states support;

• Support for Memory System Resource Partitioning and Monitoring (MPAM) (see link);

• Support for Energy Aware Scheduling (EAS) (see link);

• Trusted Firmware-A v2.10;

• Hafnium v2.10 as Secure Partition Manager (SPM) at S-EL2;

• OP-TEE 4.2.0 as Secure Partition at S-EL1, managed by S-EL2 SPMC (Hafnium), support in Buildroot distri-
bution. This includes OP-TEE client and OP-TEE test suite;

• Trusty with FF-A messaging - FF-A v1.0;

• Tower Interconnect PMU’s enabled for profiling;

• Support for secure boot based on Trusted Boot Board Requirements (TBBR) specification (see link);

• System Control Processor (SCP) firmware v2.14;

• Runtime Security Engine (RSE) firmware v2.0.0;

• U-Boot bootloader v2024.02;

• Power management features: cpufreq and cpuidle;

• System Control and Management Interface (SCMI) support;

• Virtio to mount the Android image in the host machine as a storage device in the FVP;

• Verified U-Boot for authenticating fit image (containing kernel + ramdisk) during Buildroot boot;

• Android Verified Boot (AVB) for authenticating boot and system image during Android boot;

• Arm FF-A driver and FF-A Transport support for OP-TEE driver in Android Common Kernel;

• Trusted Services (Crypto and Internal Trusted Storage) running at S-EL0;

1.9. Release notes - TC23.1 103

https://developer.arm.com/documentation/107768/0100/Arm-Memory-System-Resource-Partitioning-and-Monitoring--MPAM--Extension
https://community.arm.com/oss-platforms/w/docs/530/energy-aware-scheduling-eas
https://developer.arm.com/documentation/den0006/latest

Total Compute

• Trusted Services test suite added to Buildroot distribution;

• PAC/BTI is enabled in Hafnium, OP-TEE and Trusted Services;

• Tracing support, based on ETE and TRBE v1.1 in TF-A, kernel and simpleperf. Traces can be captured with
simpleperf;

• DICE Protection Environment (DPE) support;

• Full-HD (1920x1080-60fps) resolution support for use with the FVP model.

1.9.6 Tools Support

• This software release extends docker support to Debian distro (making it supported to all TC build variants).

1.9.7 Optimizations

U-Boot boot time optimization

To speed up the boot process, you can interrupt the auto-boot process:

1. When the terminal displays Hit any key to stop autoboot: X, press ENTER.

2. At the resulting command prompt, type boot and press ENTER. This continues the boot process. Although the
configured delay is 1-3 seconds, it takes considerably longer (approximately 15 seconds) because of the time
difference between the CPU frequency and the FVP operating frequency.

1.9.8 Limitations

Development Host OS Support

Ubuntu 22.04 is not supported in this release;

1.9.9 Known issues

1. Ray tracing is currently not supported by the GPU DDK (hardware rendering);

2. The Kernel Selftest sanity test reports a failure for the check_ksm_options test as illustrated on the following
excerpt. This is expected as the KSM driver is not part of the TC3 kernel.

(...)
selftests: arm64: check_ksm_options
not ok 3 selftests: arm64: check_ksm_options # exit=1
(...)

3. When running the EAS for LISA, the test TwoBigThreeSmall:test_task_placementmay fail with an output
similar to the following:

(...)
TwoBigThreeSmall[board=tc]:test_task_placement ␣
→˓UUID=17fc2798916b4b1f9dae399c20dd3e63 FAILED
energy threshold: 2472495.7617728077 bogo-joules
estimated energy: 2699550.767562539 bogo-joules

(continues on next page)

104 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

noisiest task:
comm: sshd
duration (abs): 0.00029410398565232754 s
duration (rel): 0.029381488120311203 %
pid: 175

(...)

4. For Android builds which use the TAP network interface, the default browser available in Android
(webview_shell) is not able to open HTTPS URLs. You can work around this limitation by getting the ARM64
specific Android Application Package (APK) package for other browsers (for example, Mozilla Firefox), in-
stalling it using Android Debug Bridge (ADB), and using it to browse HTTPS URLs;

5. The Android PAUTH sanity test may sometimes report inconsistent failing test results (this behaviour is currently
under investigation). If experiencing this situation, repeat the test a few times to validate the feature;

6. TensorFlow application (benchmark_model) needs to download extra dependencies during the build process,
which may lead to a failure because of network related issues. If experiencing this issue, try to rebuild TensorFlow
application alone a few times with ./run_docker.sh ./build-ml-app.sh clean build deploy to finish
the build.

7. The TC FVP model running Android may report a crash if the TensorFlow application benchmark_model is
interrupted during execution. To prevent this situation, please wait until the TensorFlow application has finished
executing.

8. When running the GPU GLES Integration tests, one of the tests belonging to the gles3_api_integration set
may fail with output similar to the following:

(...)
===
UTF: Running gles3_api_integration
===
(...)
Initializing: S:{gles3_api_integration} T:{afrc_sample [0x0006]} D:{0}
System time: Fri Apr 5 15:54:57 2024
Running: S:{gles3_api_integration} T:{afrc_sample [0x0006]} D:{0}
Fail: S:{gles3_api_integration} T:{afrc_sample [0x0006]} F:{ [0x00]} D:{294}
→˓ - file!=((void*)0) fail [0x0!=0x0] (<unknown>)
Terminating: S:{gles3_api_integration} T:{afrc_sample [0x0006]} D:{0}
(...)
===
UTF: Result Details
===
(...)
Info: S:{gles3_api_integration} T:{afrc_render [0x0005]} F:{ [0x00]} D:
→˓{9000} - ---

Fail: S:{gles3_api_integration} T:{afrc_sample [0x0006]} F:{ [0x00]} D:{294}
→˓ - file!=((void*)0) fail [0x0!=0x0] (<unknown>)
(...)

9. When running the GPU EGL Integration tests, some tests may fail, resulting in output similar to the following:

1.9. Release notes - TC23.1 105

Total Compute

(...)
===
UTF: Result Details
===
(...)
Fail: S:{egl_surface_suite} T:{surface_depth_readback_valid_swap [0x0015]}␣
→˓F:{ [0x00]} D:{11441} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_depth_readback_valid_swap [0x0015]}␣
→˓F:{ [0x00]} D:{21467} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_depth_readback_valid_swap [0x0015]}␣
→˓F:{ [0x00]} D:{31473} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_depth_readback_valid_swap [0x0015]}␣
→˓F:{ [0x00]} D:{41673} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_depth_readback_valid_swap [0x0015]}␣
→˓F:{ [0x00]} D:{51919} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_depth_readback_valid_swap [0x0015]}␣
→˓F:{ [0x00]} D:{62043} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_depth_readback_valid_swap [0x0015]}␣
→˓F:{ [0x00]} D:{72164} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_depth_readback_valid_swap [0x0015]}␣
→˓F:{ [0x00]} D:{82463} - Fail check_res != 0 fail (<unknown>)
(...)
Fail: S:{egl_surface_suite} T:{surface_color_readback_valid_msaa_swap␣
→˓[0x0017]} F:{ [0x00]} D:{11605} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_color_readback_valid_msaa_swap␣
→˓[0x0017]} F:{ [0x00]} D:{21859} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_color_readback_valid_msaa_swap␣
→˓[0x0017]} F:{ [0x00]} D:{32137} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_color_readback_valid_msaa_swap␣
→˓[0x0017]} F:{ [0x00]} D:{42144} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_color_readback_valid_msaa_swap␣
→˓[0x0017]} F:{ [0x00]} D:{52193} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_color_readback_valid_msaa_swap␣
→˓[0x0017]} F:{ [0x00]} D:{62272} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_color_readback_valid_msaa_swap␣
→˓[0x0017]} F:{ [0x00]} D:{72636} - Fail check_res != 0 fail (<unknown>)
Fail: S:{egl_surface_suite} T:{surface_color_readback_valid_msaa_swap␣
→˓[0x0017]} F:{ [0x00]} D:{82977} - Fail check_res != 0 fail (<unknown>)
(...)
Fail: S:{egl_image_suite} T:{afbc_bch_external_image_test [0x0008]} F:{␣
→˓[0x00]} D:{135} - file!=((void*)0) fail [0x0!=0x0] (<unknown>)
Fail: S:{egl_image_suite} T:{afbc_usm_external_image_test [0x0009]} F:{␣
→˓[0x00]} D:{343} - file!=((void*)0) fail [0x0!=0x0] (<unknown>)
(...)
Fail: S:{egl_damage_suite} T:{partial_update_entire_surface_with_buffer_age_
→˓zero [0x0002]} F:{ [0x00]} D:{30687} - check_res==1 fail [0==1] (<unknown>
→˓)
(...)
Fail: S:{egl_damage_suite} T:{partial_update_glReadPixel_in_damage_region_
→˓between_drawcalls_ms [0x0007]} F:{ [0x00]} D:{6764} - data_out==ref_color_
→˓out fail [00==0xff @ item 0] (<unknown>)
(...)
Fail: S:{egl_damage_suite} T:{partial_update_prerotate_fullscreen [0x000e]}␣
→˓F:{ [0x00]} D:{68555} - check_res==1 fail [0==1] (<unknown>)(continues on next page)

106 Chapter 1. Total Compute: TC23.1

Total Compute

(continued from previous page)

(...)
Fail: S:{egl_damage_suite} T:{partial_update_set_region_after_drawcall␣
→˓[0x0016]} F:{ [0x00]} D:{38224} - check_res==1 fail [0==1] (<unknown>)
(...)
===
UTF: Result Summary
===
22 assertions Fail

200 tests considered
165 tests passed
27 tests skipped
0 tests expected to fail
8 tests failed

6 suites considered
3 suites did not pass

Run time 70m 7s
===
(...)

10. When running the GPU Vulkan Integration tests, the test vulkan_wsi_external_memory_dma_buf_32k_image
fails and aborts execution as shown in the following output. The exact cause is currently under investigation. To
work around this error and prevent the GPU Integration test failing, run the tests individually.

(...)
02-20 21:26:32.471 3197 3197 I mali_test: [INSTANCE EXTENSION] ␣
→˓[12] 'VK_EXT_debug_report' version 10
02-20 21:26:32.471 3197 3197 I mali_test: [INSTANCE EXTENSION] ␣
→˓[13] 'VK_EXT_debug_utils' version 2
02-20 21:26:32.471 3197 3197 I mali_test: [DEVICE QUEUE] count 1
02-20 21:26:32.471 3197 3197 I mali_test: [DEVICE QUEUE] [0] flags =␣
→˓0xc07, count = 2, timestamp valid bits = 64
02-20 21:26:32.474 3197 3197 I mali_test: Testing format R8G8B8A8, linear␣
→˓case.
02-20 21:26:32.484 3197 3197 I mali_test: DRM format modifier 0:
02-20 21:26:32.484 3197 3197 I mali_test: type = LINEAR
02-20 22:03:21.584 3197 3199 I mali_test: UTF not progressing.
02-20 22:23:21.584 3197 3199 I mali_test: UTF not progressing.
02-20 22:43:21.585 3197 3199 I mali_test: UTF not progressing after 3␣
→˓checks. Aborting
(...)

11. The SSH connection to fvp running Buildroot may fail due to a “Host key verification failed. . . ” error. To resolve
this issue, you can use the following command to remove the localhost entry and try again: ssh-keygen -f
"$HOME/.ssh/known_hosts" -R "[localhost]:8022"

12. The CPU hotplug works well with Buildroot and Debian distributions. However, in Android, CPU hotplug
operations cause the system to hang. The issue is due to the integration of Hafnium and Trusty OS in the system
and the PSCI CPU ON and OFF APIs are not yet supported in this case.

1.9. Release notes - TC23.1 107

Total Compute

1.9.10 Support

For support email: support@arm.com.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

108 Chapter 1. Total Compute: TC23.1

mailto:support@arm.com

CHAPTER

TWO

PREVIOUS RELEASES

This web page provides a list of all the TotalCompute Software Stack releases, cataloged by major version, which can
be used for easy historical reference.

2.1 TC2 release tags

TC2-2023.10.04

TC2-2023.08.15

TC2-2023.04.21

TC2-2022.12.07

TC2-2022.08.12

2.2 TC1 release tags

TC1-2022.10.07

TC1-2022.05.12

TC1-2021.08.17

2.3 TC0 release tags

TC0-2022.02.25

TC0-2021.07.31

TC0-2021.04.23

TC0-2021.02.09

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

109

https://totalcompute.docs.arm.com/en/tc2-2023.10.04/totalcompute/tc2/index.html
https://totalcompute.docs.arm.com/en/tc2-2023.08.15/totalcompute/tc2/index.html
https://totalcompute.docs.arm.com/en/tc2-2023.04.21/totalcompute/tc2/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc2-2022.12.07/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc2-2022.08.12/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc1-2022.10.07/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc1-2022.05.12/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc1-2021.08.17/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc0-2022.02.25/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc0-2021.07.31/docs/totalcompute/index.html
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-docs/-/tree/TC0-2021.04.23/docs/totalcompute/tc0
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-docs/-/tree/TC0-2021.02.09/docs/totalcompute/tc0

	Total Compute: TC23.1
	Total Compute Platform Software Components
	RSE Firmware
	SCP Firmware
	AP Secure World Software
	AP firmware
	Trusted Firmware-A (TF-A) BL1
	Trusted Firmware-A (TF-A) BL2
	Trusted Firmware-A (TF-A) BL31

	Secure Partition Manager
	Secure Partitions
	OP-TEE
	Trusted Services
	Trusty

	AP Non-Secure World Software
	U-Boot
	Linux Kernel
	System MMU (aka SMMU or IOMMU)
	Android
	Microdroid

	Buildroot
	Debian
	TensorFlow Lite Machine Learning

	Instructions: Obtaining Total Compute software deliverables
	TC Software Stack Overview
	User Guide
	Notice
	Prerequisites
	Download the source code and build
	Download the source code
	Initial Setup
	Build options
	Debian OS build variant
	Android OS build variants
	Hardware vs Software rendering
	Android Verified Boot (AVB)

	Build variants configuration
	Buildroot build
	Debian build
	Debian build (without software or GPU hardware rendering support)

	Android build
	Android build with hardware rendering support based on prebuilt binaries
	Android build with hardware rendering support based on DDK source code
	Android build with software rendering support

	Build command
	More about the build system
	Build component requirements

	Provided components
	Firmware and Software Components
	Runtime Security Engine (RSE)
	System Control Processor (SCP)
	Trusted Firmware-A
	U-Boot
	Hafnium
	OP-TEE
	S-EL0 trusted-services
	Trusty
	Linux

	Distributions
	Buildroot Linux distro
	Debian Linux distro
	Android

	Run scripts

	Obtaining the TC3 FVP
	Running the software on FVP
	Running Buildroot
	Running Debian
	Running Android
	Android general common run command
	Android with AVB enabled

	Expected behaviour

	Running sanity tests
	SCMI
	TF-A
	TF-M
	Validate the TensorFlow Lite ML flow
	Prerequisites
	Manually uploading a TensorFlow Lite ML model for Buildroot or application for Debian distro
	Manually uploading a TensorFlow Lite ML model, Arm Neural Network and application for Android
	Running the provided TensorFlow Lite ML model examples

	OP-TEE
	Trusted Services and Client application
	Trusty
	Microdroid
	Prerequisites
	Run Microdroid demo
	Run Microdroid instance
	Connect to Microdroid instance with ADB

	Kernel Selftest
	Rotational Scheduler
	MPAM
	MPMM
	BTI
	MTE
	PAUTH
	EAS with LISA
	pKVM SMMUv3 driver support validation
	CPU hardware capabilities
	GPU Integration
	Initial Setup
	Running GLES integration tests
	Running EGL integration tests
	Running Vulkan integration tests

	Debugging on Arm Development Studio
	Attach and Debug
	Switch between SCP and AP
	Enable LLVM parser (for Dwarf5 support)
	Arm DS version

	Feature Guide
	Firmware Update
	Creating Capsule
	Loading Capsule
	Updating Firmware

	AutoFDO in Android
	Prerequisites
	Steps to use AutoFDO

	ADB connection on Android
	Connect to the running FVP-model instance
	Upload a file
	Download a file
	Execute a remote command

	Set up TAP interface for Android ADB
	Steps to set up the tap interface
	Steps to graceful disable and remove the tap interface

	Running and Collecting FVP tracing information
	Getting the list of trace sources
	Executing the FVP-model with traces enabled

	DICE/DPE
	Verify DPE from U-boot
	Verify DPE from Microdroid

	System profiling, Applications tracing and Trace analysis
	Simpleperf
	Simpleperf List
	Simpleperf Stat
	Get system wide event counts for a specific duration and print at a specific interval
	Get event counts for a specific process within a duration
	Get specific events for a particular process
	Get non-CPU PMU events
	Collect event counters using event-groups

	Simpleperf Record
	Simpleperf Report

	Perf
	List of available events
	Perf Stat
	Special considerations considering TC3 and implications on the perf stat command

	Perf Record, Report and Annotate
	Perf and Arm SPE extension

	Perfetto
	Recording and Visualising Traces with Perfetto
	Trace config examples
	Example 1: collect ftrace scheduling events, process stats and system stats counters every 1000ms:
	Example 2: collect cpu_cycles and instructions CPU PMU counters on all CPUs:
	Example 3: call stack sampling of processes:

	Security
	Assumptions and Delegated Mitigations

	Expected test results
	SCMI unit tests
	TF-A unit tests
	TF-M unit tests
	OP-TEE unit tests
	Trusted Services and Client application unit tests
	Trusty unit tests
	Microdroid Demo unit tests
	Kernel selftest unit tests
	Rotational scheduler unit tests
	MPAM unit tests
	MPMM unit tests
	BTI unit tests
	MTE unit tests
	PAUTH unit tests
	EAS with Lisa unit tests
	CPU hardware capabilities
	GPU GLES Integration tests
	GPU EGL Integration tests

	Troubleshooting: common problems and solutions
	Docker
	Error message: Cannot Connect to a Docker Daemon
	Error message: transport: dial unix /var/run/docker/containerd/docker-containerd.sock: connect: connection refused

	Release notes - TC23.1
	Release tag
	Platform Support
	Components
	Hardware Features
	Software Features
	Tools Support
	Optimizations
	U-Boot boot time optimization

	Limitations
	Development Host OS Support

	Known issues
	Support

	Previous releases
	TC2 release tags
	TC1 release tags
	TC0 release tags

