Total Compute

Arm Limited

Apr 04, 2024

TOTAL COMPUTE:

1 Total Compute: TC2-2024.02.22-LSC 1
1.1 Total Compute Platform Software Components 1
1.1.1 RSSFErmware e e e e e 1

1.1.2 SCPFErmware o o e e e e e e e e e e e e e 1

1.1.3 AP Secure World Software 2

1.1.4 AP Non-Secure World Software 3

1.2 Instructions: Obtaining Total Compute software deliverables 4
1.3 TC Software Stack Overview o e e e e e e e 4
1.4 UserGuide o e e e e e e e e 5
141 NOtice . . . o o v e e e 6

142 PrerequiSites o v v i i e e e e e e e e e e e e e e e e e e e 6

1.43 Download the source code and build oo 7

144 Provided components o e e e 10

1.45 Obtainingthe TC2FVP o o e 12

1.4.6 Running the softwareon FVP 12

1.47 Running sanity testS« v v v vt e e e e e e e e e e e e e e e e e e e 14

1.4.8 Debugging on Arm Development Studio 20

149 Feature Guide e 22

1.5 Expected testresults e 28
1.5.1 ACS (UEFI boot with ACPI support) Test Suite unittests 28

1.52 ACPITestSuite unit tests o v v v v v i e e e e e e e e e e e 32

1.6 Troubleshooting: common problems and solutions, 34
1.6.1 Docker e 34

1.7 Release notes - TC2-2024.02.22-LSC o e 34
1.7.1 Releasetag e e 35

172 COMPONENES .+ v v v o v e 35

1.7.3 Hardware Features i i e e 35

1.7.4 Software Features e 36

1.7.5 Platform Support e 36

1.7.6 Tools Support e 36

1.7.7 Knownissues or Limitations L e 36

L1.7.8 Support e e e e e e e e e e e 41

2 Previous releases 43
2.1 Latest TCrelease o o i i i i e e e e e e 43
2.2 TC2release tags . . . v v v v v e 43
2.3 TCIrelease tags . . . v v v v v o i e e e e e e e e e e e e e e e e e e e 43
24 TCOrelease tags o i i e e e e e 43

CHAPTER
ONE

TOTAL COMPUTE: TC2-2024.02.22-LSC

Total Compute is an approach to moving beyond optimizing individual IP to take a system-level solution view of the
SoC that puts use cases and experiences at the heart of the designs.

Total Compute focuses on optimizing Performance, Security, and Developer Access across Arm’s IP, software, and
tools. This means higher-performing, more immersive, and more secure experiences on devices coupled with an easier
app and software development process.

1.1 Total Compute Platform Software Components

1.1.1 RSS Firmware

Runtime Security Subsystem (RSS) serves as the Root of Trust for the Total Compute platform.
RSS BLI code is the first software that executes right after a cold reset or Power-on.

RSS initially boots from immutable code (BL1_1) in its internal ROM, before jumping to BL1_2, which is provisioned
and hash-locked in RSS OTP. The updatable MCUboot BL2 boot stage is loaded from the flash into RSS SRAM,
where it is authenticated. BL2 loads and authenticates the TF-M runtime into RSS SRAM from host flash. BL2 is also
responsible for loading initial boot code into other subsystems within Total Compute as below.

1. SCP BL1I;
2. APBLI.

The following diagram illustrates the boot flow sequence:

1.1.2 SCP Firmware

The System Control Processor (SCP) is a compute unit of Total Compute and is responsible for low-level system
management. The SCP is a Cortex-M3 processor with a set of dedicated peripherals and interfaces that you can extend.
SCP firmware supports:

1. Power-up sequence and system start-up;
2. Initial hardware configuration;
3. Clock management;

4. Servicing power state requests from the OS Power Management (OSPM) software.

Total Compute

SCP BL1

It performs the following functions:
1. Sets up generic timer, UART console and clocks;
2. Initializes the Coherent Interconnect;
3. Powers ON primary AP CPU;

4. Loads SCP Runtime Firmware.

SCP Runtime Firmware
SCP runtime code starts execution after TF-A BL2 has authenticated and copied it from flash. It performs the following
functions:

1. Responds to SCMI messages via MHUV2 for CPU power control and DVFS;

2. Power Domain management;

3. Clock management.

1.1.3 AP Secure World Software

Secure software/firmware is a trusted software component that runs in the AP secure world. It mainly consists of AP
firmware, Secure Partition Manager and Secure Partitions (OP-TEE, Trusted Services).

AP firmware

The AP firmware consists of the code that is required to boot Total Compute platform up to the point where the OS
execution starts. This firmware performs architecture and platform initialization. It also loads and initializes secure
world images like Secure partition manager and Trusted OS.

Trusted Firmware-A (TF-A) BL1

BL1 performs minimal architectural initialization (like exception vectors, CPU initialization) and Platform initializa-
tion. It loads the BL2 image and passes control to it.

Trusted Firmware-A (TF-A) BL2

BL2 runs at S-EL1 and performs architectural initialization required for subsequent stages of TF-A and normal world
software. It configures the TrustZone Controller and carves out memory region in DRAM for secure and non-secure
use. BL2 loads below images:

1. SCP BL2 image;

2. EL3 Runtime Software (BL31 image);

3. Secure Partition Manager (BL32 image);

4. Non-Trusted firmware - EDK2 (BL33 image) and Grub;
5

. Secure Partitions images (OP-TEE and Trusted Services).

2 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

Trusted Firmware-A (TF-A) BL31

BL2 loads EL3 Runtime Software (BL31) and BL1 passes control to BL31 at EL3. In Total Compute BL31 runs at
trusted SRAM. It provides the below mentioned runtime services:

1. Power State Coordination Interface (PSCI);
2. Secure Monitor framework;
3. Secure Partition Manager Dispatcher.
Secure Partition Manager
Total Compute enables FEAT S-EL2 architectural extension, and it uses Hafnium as Secure Partition Manager Core

(SPMC). BL32 option in TF-A is re-purposed to specify the SPMC image. The SPMC component runs at S-EL2
exception level.

Secure Partitions

Software image isolated using SPM is Secure Partition. Total Compute enables OP-TEE and Trusted Services as Secure
Partitions.

OP-TEE

OP-TEE Trusted OS is virtualized using Hafnium at S-EL2. OP-TEE OS for Total Compute is built with FF-A and
SEL2 SPMC support. This enables OP-TEE as a Secure Partition running in an isolated address space managed by
Hafnium. The OP-TEE kernel runs at S-EL1 with Trusted applications running at S-ELO.

Trusted Services

Trusted Services like Crypto Service, Internal Trusted Storage runs as S-ELO Secure Partitions.

1.1.4 AP Non-Secure World Software

EDK2 (BL33)

TF-A BL31 passes execution control to EDK2 UEFI FW bootloader (BL33). EDK2 UEFI FW will load and verify
signature of Grub.

Grub bootloader

Grub bootloader provides flexibility to configure some boot parameters, and ultimately loads and boots the Linux
Kernel.

1.1. Total Compute Platform Software Components 3

Total Compute

Linux Kernel

Linux Kernel in Total Compute contains the subsystem-specific features that demonstrate the capabilities of Total
Compute.

Debian

This variant is based on the Debian 12 (aka Bookworm) filesystem. This image can be used for development or vali-
dation work that does not imply pixel rendering, as currently there is no support for software or hardware rendering.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.2 Instructions: Obtaining Total Compute software deliverables

¢ To build the TC2 software stack, please refer to the user guide;
* For further details on the latest release and features, please refer to the release notes;

 To get detailed information on the system architecture and each of its components, please refer to the .

1.3 TC Software Stack Overview

The TC2 software consists of firmware, kernel and file system components that can run on the associated FVP.
Following is presented the high-level list of the software components:
1. SCP firmware — responsible for system initialization, clock and power control;
2. RSS firmware — provides Hardware Root of Trust;
3. AP firmware — Trusted Firmware-A (TF-A);
4. Secure Partition Manager - Hafnium;
5. Secure Partitions:
¢ OP-TEE Trusted OS;
¢ Trusted Services;

6. EDK2 UEFI FW and Grub — loads and verifies the fitlmage for Debian boot, containing kernel and filesys-
tem;

7. Kernel — supports the following hardware features:
¢ Message Handling Unit;
¢ PAC/MTE/BTI features;

8. Debian;

For more information on each of the stack components, please refer to the Total Compute Platform Software Compo-
nents section.

Copyright (¢) 2022-2024, Arm Limited. All rights reserved.

4 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

1.4 User Guide

Contents

e User Guide
— Notice
— Prerequisites
— Download the source code and build
* Download the source code

* [Initial Setup

*

Build options
- Debian OS build variant
* Build variants configuration
- Debian build
- Debian build (UEFI boot with ACPI Support)
% Build command
* More about the build system
% Build Components and its dependencies
— Provided components
* Firmware Components
- Trusted Firmware-A
- System Control Processor (SCP)
- Hafnium
- OP-TEE
- S-ELO trusted-services
- Linux
% Distributions
- Debian Linux distro
- UEFI
- GRUB
% Run scripts
— Obtaining the TC2 FVP
— Running the software on FVP
% Running Debian (UEFI boot with ACPI support)

* Expected behaviour

— Running sanity tests

1.4. User Guide

Total Compute

% ACS (UEFI boot with ACPI support)
% ACPI Test Suite
- Verify the ACPI tables in UEFI shell
- Verify PPTT ACPI table content in Debian shell
— Debugging on Arm Development Studio
% Attach and Debug
% Switch between SCP and AP
% Enable LLVM parser (for Dwarf5 support)
% Arm DS version
— Feature Guide
% Set up TAP interface
- Steps to set up the tap interface
- Steps to graceful disable and remove the tap interface
* Running and Collecting FVP tracing information

- Getting the list of trace sources

- Executing the FVP-model with traces enabled

1.4.1 Notice

The Total Compute 2022 (TC2) software stack uses bash scripts to build an integrated solution comprising Board
Support Package (BSP) and Debian distribution.

1.4.2 Prerequisites

These instructions assume that:
* Your host PC is running Ubuntu Linux 20.04;
* You are running the provided scripts in a bash shell environment;
* This release requires TC2 Fast Model platform (FVP) version 11.23.28.

To get the latest repo tool from Google, please run the following commands:

mkdir -p ~/bin

curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

export PATH=~/bin:$PATH

To avoid errors while attempting to clone/fetch the different TC software components, your system should have a proper
minimum git config configuration. The following command exemplifies the typical git config configuration
required:

6 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

git config --global user.name "<user name>"
git config --global user.email "<email>"
git config --global protocol.version 2

To install and allow access to docker, please run the following commands:

sudo apt install docker.io
ensure docker service is properly started and running
sudo systemctl restart docker

To manage Docker as a non-root user, please run the following commands:

sudo usermod -aG docker $USER
newgrp docker

1.4.3 Download the source code and build
The TC2 software stack supports the following distro:

¢ Debian (based on Debian 12 Bookworm);
Download the source code

Create a new folder that will be your workspace, which will henceforth be referred to as <TC2_WORKSPACE> in these
instructions.

mkdir <TC2_WORKSPACE>
cd <TC2_WORKSPACE>
export TC2_RELEASE=refs/tags/TC2-2024.02.22-LSC

To sync Debian source code, please run the following repo commands:

repo init -u https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-
—manifest \

-m tc2.xml \

-b ${TC2_RELEASE} \

-g bsp
repo sync -j ‘nproc’ --fetch-submodules

Once the previous process finishes, the current <TC2_WORKSPACE> should have the following structure:
e build-scripts/: the components build scripts;
e run-scripts/: scripts to run the FVP;

e src/: each component’s git repository.

1.4. User Guide 7

Total Compute

Initial Setup

The setup includes two parts:
1. setup a docker image;
2. setup the environment to build TC images.

Setting up a docker image involves pulling the prebuilt docker image from a docker registry. If that fails, it will build
a local docker image.

To setup a docker image, patch the components, install the toolchains and build tools, please run the commands men-
tioned in the following Build variants configuration section, according to the distro and variant of interest.

The various tools will be installed in the <TC2_WORKSPACE>/tools/ directory.
Build options
Debian OS build variant

Currently, the Debian OS build distro does not support software or hardware rendering. Considering this limitation,
this build variant should be only used for development or validation work that does not imply pixel rendering.

Build variants configuration

This section provides a quick guide on how to build the TC software stack considering the Debian build variant, using
the most common options.

Debian build

Currently, the Debian build does not support software or hardware rendering. As such, the TC_GPU variable value should
not be defined. The Debian build can still be a valuable resource when just considering other types of development or
validation work, which do not involve pixel rendering.

Debian build (UEFI boot with ACPI Support)

To build the Debian with UEFI based boot which has ACPI support, please run the following commands:

export PLATFORM=tc2

export FILESYSTEM=debian
export TC_TARGET_FLAVOR=fvp
export TC_BL33=uefi

cd build-scripts

./setup.sh

Warning: If building the TC2 software stack for more than one target, please ensure you run a clean build between
each different build to avoid setup/building errors (refer to the next section “More about the build system” for
command usage examples on how to do this).

8 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

Warning: If running repo sync again is needed at some point, then the setup. sh script also needs to be run
again, as repo sync can discard the patches.

Note: Most builds will be done in parallel using all the available cores by default. To change this number, run export
PARALLELISM=<number of cores>

Build command

To build the whole TC2 software stack, simply run:

./run_docker.sh ./build-all.sh build

Once the previous process finishes, the previously defined environment variable $FILESYSTEM will be
automatically used and the current <TC2_WORKSPACE> should have the following structure:

e build files are stored in <TC2_WORKSPACE>/output/<$FILESYSTEM>/tmp_build/;
* final images will be placed in <TC2_WORKSPACE>/output/<$FILESYSTEM>/deploy/.

More about the build system

The build-all. sh script will build all the components, but each component has its own script, allowing it to be built,
cleaned and deployed separately. All scripts support the build, clean, deploy, patch commands. build-all.sh
also supports all, which performs a clean followed by a rebuild of all the stack.

For example, to build, deploy, and clean SCP, run:

./run_docker.sh ./build-scp.sh build
./run_docker.sh ./build-scp.sh deploy
./run_docker.sh ./build-scp.sh clean

The platform and filesystem used should be defined as described previously, but they can also be specified as the
following example:

./run_docker.sh ./build-all.sh \
-p $PLATFORM \
-f $FILESYSTEM \
-t $TC_TARGET_FLAVOR \
-g $TC_GPU \
-b ${TC_BL33} build

1.4. User Guide 9

Total Compute

Build Components and its dependencies

A new dependency to a component can be added in the form of $component=$dependency in the dependencies.

txt file

To build a component and rebuild those components that depend on it, run:

./run_docker.sh ./<BUILD-SCRIPT-FILENAME> build with_reqgs

Those options work for all the build-*. sh scripts.

1.4.4 Provided components

Firmware Components

Trusted Firmware-A

Based on Trusted Firmware-A

Script

<TC2_WORKSPACE>/build-scripts/build-tfa.sh

Files

* <TC2_WORKSPACE>/output/<$FILESYSTEM>/deploy/tc2/bl1-
tc.bin
* <TC2_WORKSPACE>/output/<$FILESYSTEM>/deploy/tc2/fip-
tc.bin

System Control Processor (SCP)

Based on SCP Firmware

Script <TC2_WORKSPACE>/build-scripts/build-scp.sh
Files
! * <TC2_WORKSPACE>/output/<$FILESYSTEM>/deploy/tc2/scp_rar
* <TC2_WORKSPACE>/output/<$FILESYSTEM>/deploy/tc2/scp_ro
Hafnium

Based on Hafnium

Script <TC2_WORKSPACE>/build-scripts/build-hafnium.sh
Fil
res « <TC2_WORKSPACE>/output/<$FILESYSTEM>/deploy/tc2/hafnius
10 Chapter 1. Total Compute: TC2-2024.02.22-LSC

https://trustedfirmware-a.readthedocs.io/en/latest/
https://github.com/ARM-software/SCP-firmware
https://www.trustedfirmware.org/projects/hafnium

Total Compute

OP-TEE

Based on OP-TEE

Script

<TC2_WORKSPACE>/build-scripts/build-optee-os.sh

Files

* <TC2_WORKSPACE>/output/<$FILESYSTEM>
pager_v2.bin

tmp_build/tfa_sp/1

S-ELO trusted-services

Based on Trusted Services

tmp_build/tfa_sp/

tmp_build/tfa_sp/i

Script <TC2_WORKSPACE>/build-scripts/build-trusted-
services.sh
Files
* <TC2_WORKSPACE>/output/<$FILESYSTEM>
sp.bin
¢ <TC2_WORKSPACE>/output/<$SFILESYSTEM>
trusted-storage.bin
Linux

The component responsible for building a 6.1 version of the mainline kernel (Linux).

Script

<TC2_WORKSPACE>/build-scripts/build-linux.sh

Files

* <TC2_WORKSPACE>/output/<$FILESYSTEM>

deploy/tc2/Image

Distributions

Debian Linux distro

Script

<TC2_WORKSPACE>/build-scripts/build-debian.sh

Files

* <TC2_WORKSPACE>/output/<$FILESYSTEM>
12-nocloud-arm64-20230612-1409.raw.img

deploy/tc2/debian:

1.4. User Guide

11

https://github.com/OP-TEE/optee_os
https://www.trustedfirmware.org/projects/trusted-services/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Total Compute

UEFI
Script <TC2_WORKSPACE>/build-scripts/build-uefi.sh
Fil
res « <TC2_WORKSPACE>/output/<$FILESYSTEM>/deploy/tc2/uefi.bit
GRUB
Script <TC2_WORKSPACE>/build-scripts/build-grub.sh
Fil
res « <TC2_WORKSPACE>/output/<$FILESYSTEM>/deploy/tc2/grubaa
Run scripts

Within the <TC2_WORKSPACE>/run-scripts/ there are several convenience functions for testing the software stack.
Usage descriptions for the various scripts are provided in the following sections.

1.4.5 Obtaining the TC2 FVP

The TC2 FVP is available to partners to build and run on Linux host environments.

To download the latest publicly available TC2 FVP model, please visit the webpage or contact Arm (sup-
port@arm.com).

1.4.6 Running the software on FVP

A Fixed Virtual Platform (FVP) of the TC2 platform must be available to run the included run scripts.

The run-scripts structure is as follows (assuming <TC2_WORKSPACE> location):

run-scripts
| --tc2
| --run_model . sh

Ensure that all dependencies are met by running the FVP: . /path/to/FVP_TC2. You should see the FVP launch,
presenting a graphical interface showing information about the current state of the FVP.

The run_model. sh script in <TC2_WORKSPACE>/run-scripts/tc2 will launch the FVP, providing the previously
built images as arguments. Run the . /run_model. sh script:

./run_model. sh
Incorrect script use, call script as:
<path_to_run_model.sh> [OPTIONS]

OPTIONS:
-m, --model path to model
-d, --distro distro version, values supported [buildroot, android-

—fvp, debian]

(continues on next page)

12 Chapter 1. Total Compute: TC2-2024.02.22-LSC

mailto:support@arm.com
mailto:support@arm.com

Total Compute

(continued from previous page)

-b, --b133 BL33 software, values supported [uefi, u-boot]

-a, --avb [OPTIONAL] avb boot, values supported [true, false],.
—DEFAULT: false

-t, --tap-interface [OPTIONAL] enable TAP interface

-n, --networking [OPTIONAL] networking, values supported [user, tap,.
—none]

DEFAULT: tap if tap interface provided, otherwise user
-- [OPTIONAL] After -- pass all further options directly.
—to the model

Running Debian (UEFI boot with ACPI support)

The TC2 FVP with Debian (UEFI boot with ACPI support) will require to enable the tap interface, since systemd
services of Debian require network access while booting. This can be ensured using the following command:

following command does assume that current location is <TC2_WORKSPACE>
./run-scripts/tc2/run_model.sh -m <model binary path> -d debian -b uefi -t tap®

Expected behaviour

When the script is run, four terminal instances will be launched:

e terminal_uart_ap used by the non-secure world components EDK2, Grub, Linux Kernel and filesystem
(Debian);

* terminal_uartl_ap used by the secure world components TF-A, Hafnium and OP-TEE;
e terminal_s0 used for the SCP logs;
e terminal_s1 used by RSS logs (no output by default).

Once the FVP is running, the hardware Root of Trust will verify AP and SCP images, initialize various crypto services
and then handover execution to the SCP. SCP will bring the AP out of reset. The AP will start booting from its ROM
and then proceed to boot Trusted Firmware-A, Hafnium, Secure Partitions (OP-TEE and Trusted Services). Following
this stage, EDK2 UEFI FW and Grub bootloader will take place, and finally the corresponding Linux Kernel distro
boot will happen.

When booting Debian, the model will boot the Linux kernel and present a login prompt on the terminal_uart_ap
window. Login using the username root (no password is required). You may need to hit Enter for the prompt to
appear.

The GUI window Fast Models - Total Compute 2 DPO is intended to show any rendered pixels, but this feature
is not currently supported for the provided Debian image on the current release.

1.4. User Guide 13

Total Compute

1.4.7 Running sanity tests

This section provides information on some of the suggested sanity tests that can be executed to exercise and validate

the TC Software stack functionality, as well as information regarding the expected behaviour and test results.

Note: The information presented for any of the sanity tests described in this section should NOT be considered
as indicative of hardware performance. These tests and the FVP model are only intended to validate the functional

flow and behaviour for each of the features.

ACS (UEFI boot with ACPI support)

To run ACS (UEFI boot with ACPI support), please proceed as follows:
1. build the stack for UEFI enabled Debian distro;

2. download the latest ACS disk image from here. This will download a compressed ACS disk prebuilt image called
sr_acs_live_image.img.xz;

download sr_acs_live_image.img.xz to the root folder of <TC2_WORKSPACE>._
—using wget util

cd <TC2_WORKSPACE>

wget --show-progress -0 sr_acs_live_image.img.xz https://github.com/ARM-
—.software/arm-systemready/raw/main/SR/prebuilt_images/v23.09_2.0.0/sr_acs_
—live_image.img.xz

3. extract the compressed ACS disk image by running the following command:

xz -d sr_acs_live_image.img.xz

4. setup the stack for running the ACS test suite by running the following command:

following commands do assume that current location is <TC2_WORKSPACE>
mkdir -p ./output/acs-test-suite/deploy

In -sf $(pwd)/output/debian/deploy/* ./output/acs-test-suite/deploy/
cp sr_acs_live_image.img ./output/acs-test-suite/deploy/tc2/

5. ACS test suite can be executed running the following command:

following command does assume that current location is <TC2_WORKSPACE>
./run-scripts/tc2/run_model.sh -m <model binary path> -d acs-test-suite -b.
—uefi

Note:

An example of the expected test result for this sanity test is illustrated in the related Toral Compute Platform

Expected Test Results document section.

14

Chapter 1. Total Compute: TC2-2024.02.22-LSC

https://github.com/ARM-software/arm-systemready/tree/main/SR/prebuilt_images/v23.09_2.0.0

Total Compute

ACPI Test Suite

Verify the ACPI tables in UEFI shell

To verify all the ACPI tables in UEFI shell, please proceed as described below:

1. start the TC2 FVP model running Debian and pay close attention to the FVP terminal_uart_ap window (as
you need to be very quick to succeed on the next step):

following command does assume that current location is <TC2_WORKSPACE>
./run-scripts/tc2/run_model.sh -m <model binary path> -d debian -b uefi -t.
—tap®

2. once the Press ESCAPE for boot options ... message appears, quickly press ESC key to interrupt the initial
boot and launch the boot options menu:

FVP terminal _uart _ap

ESCAPE for boot options I

3. using the navigation keys on your keyboard, select the Boot Manager option as illustrated on the next image
and press ENTER key to select it:

4. select the UEFI Shell option and press the ENTER key:

1.4. User Guide 15

Total Compute

FVP terminal uart _ap

Select Language {Standard English> This selection will
take you to the Boot

> Device Manager Manager
5ot anacer

> Boot Maintenance Manager

Continue
Reset

“v=Move Highlight {Enter>=Select Entry

16 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

FVP terminal uart ap

Boot Hanager

Device Path :

Manager Menu MemoryMapped(0xB,0xFCB
41008,0xFCFC7247) /FwFi
le(7C04A583-9E3E-4F1C-

UEFI Misc Device ADES-E05268D0B4D1)
UEFI Misc Device 2

UEFI Non-Block Boot Device

UEFI Mon-Block Boot Device 2

Use the <*> and <{v> keys to choose a boot option,
the <Enter> key to select a boot option, and the
{Esc> key to exit the Boot Manager Menu,

|
|
\ “v=Move Highlight {Enter>=Select Entry Es

1.4. User Guide 17

Total Compute

5. allow the platform to boot into the UEFI shell (the ENTER key can be pressed to skip the 5 seconds waiting if
desired):

FVP terminal uart ap

UEFI Interactive Shell i
EDK II
LEFI v 0
Happing table
FS2: Alias(s):HD3p::
YenHu{ 3BEEE! 4A00) /HD(15,G 2-FD2B-63

45-BIF2-E9SAEDE

FS1: FIlms{s}'F
Memor 'd”:JF'F'l:fl

FS0: Alias(s):F1:
MemoryMapped(

BLK3: Alias(s):
VirtualCD(

BLKO: Alias(s):
YenHu(3BEEE!

BLK1: FIlms{s}'

ZHDCL ,GPT ,E71D1088-EDCE-8E4

Ap st,irt,l.p nsh or any other key to continue,]]

6. once the UEFI shell prompt appears, dump the ACPI content by running the command acpiview as illustrated
on the next image:

It is possible to filter the output to a single ACPI table by specifying the respective table name of interest. This can be
achieved by running the command acpiview -s <TABLE-NAME>, where <TABLE-NAME> can be any of the following
values: FACP, DSDT, DBG2, GTDT, SPCR, APIC, PPTT or SSDT.

Note: This test is specific to Debian with UEFI ACPI support only. An example of the expected test result for this test
is illustrated in the related Total Compute Platform Expected Test Results document section.

18 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

FVP terminal _uart_ap

UEFI Interactive Shell 2.2
EDK II
UEFT v2,70 (EDK II, 0O
Happing table
FS2: Alias(s):HD3
Vort(306 -BALE-CBO1C3264¢
45-B9F2-E9SAEDE7648
FS1: Alias(s)
MemoryMappe ,OxFCB410(xFCFC7247)
FS0: Alias(s):F
MemoryMapped(0xB, 0 EOLFFFFF)
BLK3: Alias(s):
VirtualCD(0
BLKO: Alias(s)
VenHw(3BEEE2D0-9
BLK1: 911-35(3}.
° /HD(1,GPT,E7101088-EDC6-8E4

P Stil‘tlp nsh or any other key to continue,

Shell)
Shell> acpiview |§

1.4. User Guide s

Total Compute

Verify PPTT ACPI table content in Debian shell

The following screenshot exemplifies how to dump the data cache information of the CPU cores while in Debian shell
(command can be run on the terminal_uart_ap window):

7sys/devices/systen/cpu/cud/cache index0/tupe.

devices/system/cpu/cpues/cache/ index/ ty

The following screenshot exemplifies how to dump the instruction cache information of the CPU cores while in
Debian shell (command can be run on the terminal_uart_ap window):

® cat /sys/devices/systen/cpu/cpu/cache/ indext/tupe

The following screenshot exemplifies how to dump the L2 cache information of the CPU cores while in Debian shell
(command can be run on the terminal_uart_ap window):

rootllocalhosty

root@localhosti™® cat /sys/devices/system/cpu/cpud/cache/index2/size
296K

root@localhost:™# cat /sys/devices/systen/cpu/cpul/cache/ index2/ type
Unified

root@localhost:™# cat /sys/devices/system/cpu/cpud/cache/ index2/level

b

root@lacalbost:*# cat /sys/devices/systen/cpu/cpud/cache/index?/umber_of_sets
512

root@localhost:™¥ cat. /sys/devices/systen/cpu/cpul/cache/ index2/id

root@localbost:~# [

Note: This test is specific to Debian with UEFI ACPI support only.

1.4.8 Debugging on Arm Development Studio

This section describes the steps to debug the TC software stack using Arm Development Studio.

Attach and Debug
1. Build the target with debug enabled (the file <TC2_WORKSPACE>/build-scripts/config can be configured
to enable debug);

2. Run the distro as described in the section Running the software on FVP with the extra parameters -- -I
to attach to the debugger. The full command should look like the following:

./run-scripts/tc2/run_model.sh -m <model binary path> -d debian -b uefi -- -
f~>I

3. Select the target Arm FVP -> TC2 -> Bare Metal Debug -> Hayesx4/Hunterx3/HunterELP SMP;

20 Chapter 1. Total Compute: TC2-2024.02.22-LSC

https://developer.arm.com/Tools%20and%20Software/Arm%20Development%20Studio

Total Compute

4. After connection, use the options in debug control console (highlighted in the below diagram) or the keyboard
shortcuts to step, run or halt;

5. To add debug symbols, right click on target -> Debug configurations and under files tab add path to elf
files;

6. Debug options such as break points, variable watch, memory view and so on can be used.

* + B YA D2 L0y Dvy = = 8

+ & TC2 connected
* (= cluster0
i\EHayes_1#1 powered down
i\ Hayes 2 #2 powered down
i\ Hayes 3 #3 powered down
¥ = cluster1
i\ Hunter 0 #4 powered down
i\ Hunter 1 #5 powered down
i\EHunter 2 #6 powered down
* (= cluster2
i\ HunterELP #7 powered down
& TC3 _AS520disconnected
& TC3 M55 disconnected

Staktus: conneckted

Note: This configuration requires Arm DS version 2023.a or later. The names of the cores shown are based on
codenames instead of product names. The mapping for the actual names follows the below described convention:

Codename | Product name
Hayes Cortex A520
Hunter Cortex A720
Hunter ELP | Cortex X4

1.4. User Guide 21

Total Compute

Switch between SCP and AP

1. Right click on target and select Debug Configurations;

2. Under Connection, select Cortex-M3 for SCP or any of the remaining targets to attach to a specific AP (please
refer to the previous note regarding the matching between the used codenames and actual product names);

3. Press the Debug button to confirm and start your debug session.
Enable LLVM parser (for Dwarf5 support)

To enable LLVM parser (with Dwarf5 support), please follow the next steps:
1. Select Window->Preferences->Arm DS->Debugger->Dwarf Parser;
2. Tick the Use LLVM DWARF parser option;
3. Click the Apply and Close button.

Arm DS version

The previous steps apply to the following Arm DS Platinum version/build:

Note: Arm DS Platinum is only available to licensee partners. Please contact Arm to have access (support@arm.com).

1.4.9 Feature Guide

Set up TAP interface

This section details the steps required to set up the tap interface on the host to enable model networking.

The following method relies on 1ibvirt handling the network bridge. This solution provides a safer approach in
which, in cases where a bad configuration is used, the primary network interface should continue operational.

Steps to set up the tap interface

To set up the tap interface, please follow the next steps (unless otherwise mentioned, all commands are intended to be
run on the host system):

1. install 1ibvirt on your development host system:

sudo apt-get update && sudo apt-get install libvirt-daemon-system libvirt-
—clients

The host system should now list a new interface with a name similar to virbr® and an IP address of
192.168.122.1. This can be verified by running the command ifconfig -a (or alternatively ip
a s for newer distributions) which will produce an output similar to the following:

$ ifconfig -a

virbr®: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

inet 192.168.122.1 netmask 255.255.255.0 broadcast 192.168.122.255
ether XX:XX:XX:XX:XX:XX txqueuelen 1000 (Ethernet)

(continues on next page)

22 Chapter 1. Total Compute: TC2-2024.02.22-LSC

mailto:support@arm.com

Total Compute

Name: | TC2
=] Files | L Debugger| % 0s Awareness| (9= Arguments | B Environment | i3 Export
Select target

Select the manufacturer, board, project type and debug operation to use.
Currently selected: Arm FVP / TC2 / Bare Metal Debug / Cortex-M3

Filter platforms

- TC2

~ Bare Metal Debug
Cortex-mM55
Hayes 0
Hayes 1
Hayes_2
Hayes_3
Hayesx4 SMP
Hayesx4/Hunterx3/HunterELP SMP
HunterELP
Hunter_0
Hunter_1
Hunter_2
Hunkterx3 SMP

» Linux Kernel Debug

Arm Debugger will connect to an FVP to debug a bare metal application. The specified FVP is not installed as part of
Arm DS. Please ensure it has been installed and is running. Alternatively you caninclude its location in your PATH
environment variable and Arm DS will launch the FvP.

Connections

© Launch a new model Model parameters
Bare Metal Debug
Connect to an already running model Connection address | 127.0.0.1:7100
DTSL Options Edit... Configure trace or other target options. Using "default" configuration options

Revert Apply

1.4. User Guide

23

Total Compute

Preferences
| Dwarf Parser v v 3
» General Use LLVM DWARF parser
v Arm DS
Arm Account

Arm Assembler
Configuration Databs
¥ Debugger
Console
Debug Control
Disassembly
Memory View
Trace
Feedback Survey
General
Product Licenses
Scatter File Editor
Target Configuration Restore Defaults Apply

by P (O R IO

@ @I @ Cancel Apply and Close

24 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

About Arm Development Studio IDE o X

Arm Development Studio helps you build, code, debug and
optimize Arm-based projects quickly. From device bring-up
to application debug to creating highly efficient micro-
controller applications, itis used to bring better products
arm to market ahead of the competition. And because
plalalelzr 401 Development Studio is created by the experts in the Arm
STUDIO architecture, it is the most comprehensive solution
available for developing for Arm-based systems.

For more information please visit https://
developer.arm.com/tools-and-software/embedded/arm-
developmenkt-studio

Version: 2023.a
Build: 2023100907

ESOD e ®
@ Installation Details

1.4. User Guide 25

Total Compute

(continued from previous page)

RX packets 0 bytes 0 (0.0 B)

RX errors ® dropped 0 overruns ® frame 0

TX packets ® bytes 0 (0.0 B)

TX errors ® dropped 0O overruns O carrier ® collisions 0

virbr®-nic: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether XX:XX:XX:XX:XX:XX txqueuelen 1000 (Ethernet)

RX packets ® bytes 0 (0.0 B)

RX errors ® dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns ® carrier ® collisions 0

$

2. create the tap® interface:

sudo ip tuntap add dev tap® mode tap user $(whoami)
sudo ifconfig tap® 0.0.0.0 promisc up
sudo brctl addif virbr® tap®

3. run the FVP model providing the additional parameter -t "tap®" to enable the tap interface:

./run-scripts/tc2/run_model.sh -m <model binary path> -d debian -b uefi -t
—"tap0®"

Before proceeding, please allow FVP model to fully boot.
4. once the FVP model boots, the running instance should get an IP address similar to 192.168.122.62;

5. validate the connection between the host tap0 interface and the FVP model by running the following command
on the fvp-model via the terminal_uart_ap window:

ping 192.168.122.1

Alternatively, it is also possible to validate if the fvp-model can reach a valid internet gateway by
pinging, for instance, the IP address 8.8.8. 8 instead.

Steps to graceful disable and remove the tap interface

To revert the configuration of your host system (removing the tap0 interface), please follow the next steps:

1. remove the tap® from the bridge configuration:

sudo brctl delif virbr® tap®

2. disable the bridge interface:

sudo ip link set virbr® down

3. remove the bridge interface:

sudo brctl delbr virbr®

4. remove the 1libvirt package:

26 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

sudo apt-get remove libvirt-daemon-system libvirt-clients

Running and Collecting FVP tracing information

This section describes how to run the FVP-model, enabling the output of trace information for debug and troubleshoot-
ing purposes. To illustrate proper trace output information that can be obtained at different stages, the following com-
mand examples will use the SMMU-700 block component. However, any of the commands mentioned, can be extended
or adapted easily for any other component.

Note: This functionality requires to execute the FVP-model enforcing the additional load of the GenericTrace. so
or ListTraceSources.so plugins (which are provided and part of your FVP bundle).

Getting the list of trace sources

To get the list of trace sources available on the FVP-model, please run the following command:

<fvp-model binary path>/FVP_TC2 \
--plugin <fvp-model plugin path/ListTraceSources.so> \
>& /tmp/trace-sources-fvp-tc2.txt

This will start the model and use the ListTraceSources.so plugin to dump the list to a file. Please note that the file
size can easily extend to tens of megabytes, as the list is quite extensive.

The following excerpt illustrates the output information related with the example component SMMU-700:

Component (1439) providing trace: TC2.css.smmu (MMU_700, 11.23.28)

Component is of type "MMU_700"
Version is "11.23.28"
#Sources: 299

Source ArchMsg.Error.error (These messages are about activity occurring on the.
—SMMU that is considered an error.

Messages will only come out here if parameter all_error_messages_through_trace.
~is true.

DISPLAY %{output})
Field output type:MTI_STRING size:0 max_size:120 (The stream output)

Source ArchMsg.Error.fetch_from_memory_type_not_supporting_httu (A descriptor.
. fetch from an HTTU-enabled translation regime to an unsupported

memory type was made. Whilst the fetch itself may succeed, if an update to
the descriptor was attempted then it would fail.)

1.4. User Guide 27

Total Compute

Executing the FVP-model with traces enabled

To execute the FVP-model with trace information enabled, please run the following command:

./run-scripts/tc2/run_model.sh -m <model binary path> -d debian -b uefi \
-\
--plugin <fvp-model plugin path/GenericTrace.so> \
-C 'TRACE.GenericTrace.trace-sources="TC2.css.smmu.*"" \
-C TRACE.GenericTrace. flush=true

Multiple trace sources can be requested by separating the trace-sources strings with commas. By default, the trace
information will be displayed to the standard output (e.g. display), which due to its verbosity may not be always the
ideal solution. For such situations, it is suggested to redirect and capture the trace information into a file, which can be
achieved by running the following command:

./run-scripts/tc2/run_model.sh -m <model binary path> -d debian -b uefi \
-\
--plugin <fvp-model plugin path/GenericTrace.so> \
-C 'TRACE.GenericTrace.trace-sources="TC2.css.smmu.*"" \
-C TRACE.GenericTrace. flush=true \
>& /tmp/trace-fvp-tc2.txt

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.5 Expected test results

Contents

» Expected test results

— ACS (UEFI boot with ACPI support) Test Suite unit tests

— ACPI Test Suite unit tests

1.5.1 ACS (UEFI boot with ACPI support) Test Suite unit tests

(...output truncated...)

remove-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-
—.test/uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/Application/StallForKey/
—»StallForKey/DEBUG/StallForKey.dll 0xF7A7BO00

add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestInfrastructure/SCT/Framework/Sct/
—.DEBUG/SCT.d11 0xF7422000

Loading driver at 0x000F7421000 EntryPoint=0x000F7427728 SCT.efi

Load support files ...

add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestInfrastructure/SCT/Drivers/

(continues on next page)

28 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

(continued from previous page)

—TestProfile/TestProfile/DEBUG/TestProfile.dll OxF74DA0O00

Loading driver at 0x000F74D9000 EntryPoint=0x000F74DC348 TestProfile.efi
add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestInfrastructure/SCT/Drivers/
—StandardTest/StandardTest/DEBUG/StandardTest.dll 0xF7416000

Loading driver at 0x000F7415000 EntryPoint=0x000F741C164 StandardTest.efi
add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestInfrastructure/SCT/Drivers/
—.TestRecovery/TestRecovery/DEBUG/TestRecovery.dll 0xF74D7000

Loading driver at 0x000F74D6000 EntryPoint=0x000F74D7784 TestRecovery.efi
add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestInfrastructure/SCT/Drivers/
—TestLogging/TestLogging/DEBUG/TestLogging.dll 0xF740F000

Loading driver at 0x000F740E000 EntryPoint=0x000F74121E0 TestLogging.efi

Load proxy files ...

Load test files ...

add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestCase/UEFI/EFI/Protocol/BlockIo2/
—BlackBoxTest/BlockIo2BBTest/DEBUG/BlockIo2BBTest.dll 0xF73F7000

Loading driver at 0x000F73F6000 EntryPoint=0x000F73FF984 BlockIo2BBTest.efi
add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestCase/UEFI/EFI/Protocol/EraseBlock/
—.BlackBoxTest/EraseBlockBBTest/DEBUG/EraseBlockBBTest.dll 0xF73F1000

Loading driver at 0x000F73F0000 EntryPoint=0x000F73F2874 EraseBlockBBTest.efi
add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestCase/UEFI/EFI/Protocol/

- UFSDeviceConfig/BlackBoxTest/UFSDeviceConfigBBTest/DEBUG/UFSDeviceConfigBBTest.dll..
—0xF73ECO00Loading driver at 0x000F73EBOOO EntryPoint=0x000F73EC7FC.
—UFSDeviceConfigBBTest.efi

add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestCase/UEFI/EFI/Protocol/
—ComponentName2/BlackBoxTest/ComponentName2BBTest/DEBUG/ComponentName2BBTest.dll..
—0xF73E2000

Loading driver at 0x000F73E1000 EntryPoint=0x000F73E627C ComponentName2BBTest.efi
add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestCase/UEFI/EFI/Protocol/IPsecConfig/
-.BlackBoxTest/IPsecConfigBBTest/DEBUG/IPsecConfigBBTest.dll 0xF73D6000

Loading driver at 0x000F73D5000 EntryPoint=0x000F73DA06C IPsecConfigBBTest.efi
add-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/
—uefi-sct/Build/bbrSct/DEBUG_GCC5/AARCH64/SctPkg/TestCase/UEFI/EFI/Protocol/DiskIo2/
—BlackBoxTest/DiskIo2BBTest/DEBUG/DiskIo2BBTest.dll 0xF73C4000

Loading driver at 0x000F73C3000 EntryPoint=0x000F73CCE80 DiskIo2BBTest.efi

(...output truncated...)
Loading driver at 0x000F737A000 EntryPoint=0x000F737E178 TimeServicesBBTest.efi

Loading driver at 0x000F70A4000 EntryPoint=0x000F70A5C18 RamDiskProtocolBBTest.efi
Test preparing...

Remaining test cases: 330

Generic services test: PlatformSpecificElements

Iterations: 1/1

(continues on next page)

1.5. Expected test results 29

Total Compute

(continued from previous page)

Arm ACS Version: v2.0.0-BETA-0

PlatformSpecificElements

Revision 0x00010001

Test Entry Point GUID: AOA8BED3-3D6F-4AD8-907A-84D52EE1543B

Test Support Library GUIDs:
1F9C2AE7-F147-4D19-A5E8-255ADOO5SEB3E
832C9023-8E67-453F-83EA-DF7105FA7466

UEFI 2.6

Test Configuration #0

Logfile: "\EFI\BOOT\bbr\SCT\Log\GenericTest\EFICompliantTest®\PlatformSpecificEl
ements_0_0_AOA8BED3-3D6F-4AD8-907A-84D52EE1543B.1log"

Test Started: 03/13/24 06:02p

UEFI Compliant - Console protocols must be implemented -- PASS
8F7556C2-4665-4353-A3AF-9CO05A1E63EL
/home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/uefi-sct/
SctPkg/TestCase/UEFI/EFI/Generic/EfiCompliant/BlackBoxTest/EfiCompliantBBTestPla
tform_uefi.c:1022:Text Input - Yes, Text Output - Yes, Text InputEx - Yes

UEFI Compliant - Hii protocols must be implemented -- PASS
B7CD2D76-EA43-4013-B7D1-59EB2EC9BF 1B
/home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/uefi-sct/
SctPkg/TestCase/UEFI/EFI/Generic/EfiCompliant/BlackBoxTest/EfiCompliantBBTestPla
tform_uefi.c:1106:HiiDatabase - Yes, HiiString - Yes, HiiConfigRouting - Yes, Hi
iConfigAccess - Yes

UEFI Compliant - Hii protocols must be implemented -- PASS
B7CD2D76-EA43-4013-B7D1-59EB2EC9BF1B
/home/runner/work/arm-systemready/arm-systemready/SR/scripts/edk2-test/uefi-sct/
SctPkg/TestCase/UEFI/EFI/Generic/EfiCompliant/BlackBoxTest/EfiCompliantBBTestPla
tform_uefi.c:1150:HiiFont - Yes

(...output truncated...)
** Starting Wakeup semantic tests ***

Operating System View:
501 : Wake from EL1 PHY Timer Int

Failed on PE - 0

Checkpoint -- 1 : Result: FAIL
502 : Wake from EL1 VIR Timer Int

Failed on PE - 0

Checkpoint -- 1 : Result: FAIL
503 : Wake from EL2 PHY Timer Int

Failed on PE - 0

Checkpoint -- 1 : Result: FAIL

504 : Wake from Watchdog WS® Int

(continues on next page)

30 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

(continued from previous page)

Invalid SPI interrupt ID number 30 : Result: PASS
505 : Wake from System Timer Int : Result: AO1F9000

One or more Wakeup tests failed or were skipped.
“* Starting Peripheral tests ***

Operating System View:
601 : USB CTRL Interface

Checkpoint -- 1 : Result: SKIPPED
602 : Check SATA CTRL Interface

Checkpoint -- 1 : Result: SKIPPED
603 : Check Arm BSA UART register offsets : Result: PASS
604 : Check Arm GENERIC UART Interrupt

Test Message : Result: PASS
606 : 16550 compatible UART

Checkpoint -- 2 : Result: SKIPPED

One or more Peripheral tests failed or were skipped.
“** Starting Watchdog tests ***
Operating System View:
701 : Non Secure Watchdog Access : Result: PASS
702 : Check Watchdog WS® interrupt : Result: PASS
All Watchdog tests passed.
*%% No ECAM region found, Skipping PCIE tests ***

#%% BSA tests complete. Reset the system.

(...output truncated...)

Note: To obtain more information on how to run this test, please refer to the Total Compute Platform User Guide -
Running sanity tests document section.

1.5. Expected test results 31

Total Compute

1.5.2 ACPI Test Suite unit tests

acpiview -s

acpiview
——————————————— RSDP Table -----—----------
Address : 0xF7870018
Length : 36
00000000 : 52 53 44 20 50 54 52 20 - 1B 41 52 4D 4C 54 44 02 RSD PTR .ARMLTD.
00000010 : 00 00 00 00 24 00 00 00 - 98 FE 87 F7 00 00 00 00 el S

00000020 : C8 00 00 00

Table Checksum :

RSDP

Signature
Checksum
Oem ID
Revision
RSDT Address
Length

XSDT Address

OK

Extended Checksum

Reserved

——————————————— XSDT Table
Address : OxF787FE98
Length 1 92
00000000 : 58 53 44 54 5C 00
00000010 : 41 52 4D 54 43 20
00000020 : 13 00 00 01 98 FB
00000030 : 00 00 00 00 98 E9
00000040 : 00 00 00 00 98 F5
00000050 : 00 00 00 00 18 EF
Table Checksum : OK

XSDT

Signature
Length
Revision
Checksum
Oem ID

Oem Table ID
Oem Revision

(...output truncated...)

00
20
87
87
87
87

00
20
F7
F7
F7
F7

: RSD PTR
: 0x1B

: ARMLTD
12

: 0x0
: 36
: OxF787FE98

: 0xC8

: 00

01
27
00
00
00
00

: XSDT

0A
07
00
00
00
00

1 92

1

: 0xA
: ARMLTD
: ARMTC

: 0x20140727

0

41
14
00
00
00
00

52 4D 4C 54 44 XSDT\..... ARMLTD
20 20 20 20 20 ARMTC ..

00 98 FA 87 F7
00 18 FE 87 F7
00 18 EB 87 F7
0

(continues on next page)

32

Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

(continued from previous page)

Address : OxF787EF18

Length ;403
00000000 : 53 53 44 54 93 01 00 00 - 02 C3 41 52 4D 4C 54 44 SSDT...... ARMLTD
00000010 : 41 52 4D 54 43 00 00 00 - 27 07 14 20 49 4E 54 4C ARMTC...'.. INTL

00000020 : 28 06 23 20 10 4E 16 5F - 53 42 5F 5B 82 41 05 43 (.# .N._SB_[.A.C
00000030 : 4F 4D 30 08 5F 48 49 44 - OD 41 52 4D 48 30 30 31 OMO._HID.ARMHOO01
00000040 : 31 00 08 5F 43 49 44 OD - 41 52 4D 48 30 30 31 31 1.._CID.ARMHOO11

00000050 : 00 08 5F 55 49 44 00 08 - 5F 53 54 41 0A OF 08 5F _UID.._STA..._
00000060 : 43 52 53 11 1A OA 17 86 - 09 00 01 00 00 40 2A 00 CRS.......... @*,
00000070 : 10 00 00 89 06 00 01 01 - 5F 00 00 00 79 00 5B 82 _...y.[.

00000080 : 41 05 43 4F 4D 31 08 5F - 48 49 44 OD 41 52 4D 48 A.COM1._HID.ARMH
00000090 : 30 30 31 31 00 08 5F 43 - 49 44 OD 41 52 4D 48 30 0011.._CID.ARMHO
000000A0 : 30 31 31 00 08 5F 55 49 - 44 01 08 5F 53 54 41 0A 011.._UID.._STA.
000000BO® : OF 08 5F 43 52 53 11 1A - OA 17 86 09 00 01 00 00 . _CRS....... L
000000CO : 40 2A 00 10 00 00 89 06 - 00 01 01 00 00 00 00 79 @~

000000D0 : 00 5B 82 41 04 56 52 30 - 30 08 5F 48 49 44 OD 4C .[.A.VROO®._HID.L
O00000E® : 4E 52 4F 30 30 30 35 00 - 08 5F 55 49 44 00 08 5F NROOOOS5.._UID.._

000000F® : 43 43 41 01 08 5F 43 52 - 53 11 1A 0A 17 86 09 00 CCA.._CRS.......
00000100 : 01 00 00 13 1C 00 00 01 - 00 89 06 00 01 01 EC OO0
00000110 : 00 00 79 00 5B 82 41 04 - 56 52 30 31 08 5F 48 49 ..y.[.A.VRO1._HI
00000120 : 44 OD 4C 4E 52 4F 30 30 - 30 35 00 08 5F 55 49 44 D.LNROO®O5.._UID
00000130 : 01 08 5F 43 43 41 01 08 - 5F 43 52 53 11 1A 0A 17 .._CCA.._CRS....
00000140 : 86 09 00 01 00 00 15 1C - 00 00 01 00 89 06 00 01
00000150 : 01 ED 00 00 00 79 00 5B - 82 3A 4E 45 54 30 08 5F y.[.:NETO._

00000160 : 48 49 44 OD 4C 4E 52 4F - 30 30 30 33 00 08 5F 55 HID.LNROOOO3.._U
00000170 : 49 44 00 08 5F 43 52 53 - 11 1A A 17 86 09 00 01 ID.._CRS........
00000180 : 00 00 00 18 00 00 01 00 - 89 06 00 01 01 8D 00 00
00000190 : 00 79 00 .y.

Table Checksum : OK

ACPI Table Header :
Signature : SSDT

Length 1 403
Revision 12

Checksum : 0xC3

Oem ID : ARMLTD
Oem Table ID : ARMTC

Oem Revision : 0x20140727
Creator ID : INTL
Creator Revision : 0x20230628

Table Statistics:
0 Error(s)
0 Warning(s)

Note: To obtain more information on how to run this sanity test, please refer to the Total Compute Platform User

1.5. Expected test results 33

Total Compute

Guide - Running sanity tests document section.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.6 Troubleshooting: common problems and solutions

This section provides a list of potential solutions to the most common problems experienced by developers and related
with the host development environment. This list is not intended to be an exhaustive list, especially due to the unpre-
dictability and nature of some problems. The developer is, therefore, strongly encouraged to read and search for more
information regarding the problem and any additional solutions (covered or not in this document).

Contents

» Troubleshooting: common problems and solutions
— Docker

% Error message: Cannot Connect to a Docker Daemon

* Error message: transport: dial unix /var/run/docker/containerd/
docker-containerd.sock: connect: connection refused

1.6.1 Docker

Error message: Cannot Connect to a Docker Daemon

Solution: Ensure docker service is running, correct permissions and user group membership are properly configured
(please refer to User Guide - prerequisites document section).

Error message: transport: dial unix /var/run/docker/containerd/docker-containerd.sock:
connect: connection refused

Solution: Restart docker service running following command: sudo systemctl restart docker.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.7 Release notes - TC2-2024.02.22-LSC

Contents

e Release notes - TC2-2024.02.22-LSC

— Release tag

— Components

34 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

Hardware Features

Software Features

Platform Support

Tools Support

Known issues or Limitations

Support

1.7.1 Release tag

The manifest tag for this release is TC2-2024.02.22-LSC.

1.7.2 Components

The following is a summary of the key software features of the release:
* BSP build supporting Debian bookworm distro;
¢ Trusted firmware-A for secure boot;
e EDK?2 bootloader;
* Hafnium for S-EL2 Secure Partition Manager core;
¢ OP-TEE for Trusted Execution Environment (TEE);
* Trusted Services (Crypto and Internal Trusted Storage);
 System Control Processor(SCP) firmware for programming the interconnect, power control, etc;

* Runtime Security Subsystem (RSS) firmware for providing HW RoT;

1.7.3 Hardware Features

* Booker aka CoreLink CI-700 with Memory Tagging Unit (MTU) support driver in SCP firmware;
* GIC Clayton Initialization in Trusted Firmware-A;

Mali-G720 GPU;

Mali-D71 DPU and virtual encoder support for display on Linux;
¢ MHUvV2 Driver for SCP and AP communication;

¢ UARTS, Timers, Flash, PIK, Clock drivers;

* PL180 MMC;

* DynamlQ Shared Unit (DSU) with 8 cores (1 Cortex X4 + 3 Cortex A720 + 4 Cortex AS520 cores configuration);

¢ RSS based on Cortex M55;
SCP based on Cortex M3;

1.7. Release notes - TC2-2024.02.22-LSC

35

Total Compute

1.7.4 Software Features

¢ Debian 12 (aka Bookworm);

e Linux Kernel 6.1.0;

* EDK2 v202402 (Feb 2024);

* Trusted Firmware-A v2.9;

* Hafnium v2.9 as Secure Partition Manager (SPM) at S-EL2;

e OP-TEE v4.1.0 as Secure Partition at S-EL1, managed by S-EL2 SPMC (Hafnium);
 Support for secure boot based on TBBR specification (more info available at link);

* System Control Processor (SCP) firmware v2.12;

* Runtime Security Subsystem (RSS) firmware v1.8.0;

* VirtIO to mount the Debian image in the host machine as a storage device in the FVP;

¢ Trusted Services (Crypto and Internal Trusted Storage) running at S-ELO;

1.7.5 Platform Support

* This software release is tested on TC2 Fast Model platform (FVP) version 11.23.28.

1.7.6 Tools Support

* This software release extends docker support to Debian distro (making it supported to all TC build variants).

1.7.7 Known issues or Limitations

1. Ubuntu 22.04 is not supported in this release;

2. SVE2 (Scalable Vector Extension) feature is not supported with this release;

3. systemd-resolved.service fails multiple times before successful start, which causes delay in boot time;
This can be avoided following one of the below workaround steps:
Method 1 - editing the Kernel command line parameters:

1. during the boot process, once the Grub screen appears (list of options that allow to choose what
to boot), press e key to edit the boot command;

2. navigate to the line with the command line parameters (usually starts with linux /boot/
vmlinux*), and append systemd.mask=systemd-resolved.service;

3. press F10 to continue to boot with the added boot parameters.
Method 2 - make the changes to be permanent for every boot:
1. wait for the OS to fully boot, login and get to the command prompt;

2. on the command prompt, run the following command vi /etc/default/grub to edit the Grub
configuration;

3. add the following line: GRUB_CMDLINE_LINUX_DEFAULT="systemd.
mask=systemd-resolved.service";

36 Chapter 1. Total Compute: TC2-2024.02.22-LSC

https://developer.arm.com/documentation/den0006/latest

Total Compute

4. save the changes and exit the vi editor;

5. on the command prompt, run the command update-grub to update and apply the new Grub
configuration.

4. Upon the completion of running the ACS (UEFI boot with ACPI support) tests, a synchronous exception is
experienced, and some dump information will be presented on the FVP terminal_uartl_ap window, similar
to the following excerpt:

...

Operating System View:

701 : Non Secure Watchdog Access : Result: PASS
702 : Check Watchdog WS® interrupt : Result: PASS

All Watchdog tests passed.
% No ECAM region found, Skipping PCIE tests *

Total Tests run = 45 Tests Passed = 34 Tests Failed = 7

“%% BSA tests complete. Reset the system. ***
remove-symbol-file /home/runner/work/arm-systemready/arm-systemready/SR/
—scripts/edk2/Build/Shell/DEBUG_GCC49/AARCH64/ShellPkg/Application/bsa-acs/
—uefi_app/BsaAcs/DEBUG/Bsa.dll 0xF73EDOOO

Synchronous Exception at 0x00000000F73F9454

Recursive exception occurred while dumping the CPU state
Unhandled Exception in EL3.

x30 = 0x000000000402ch94
x0 = 0x0000000000000000
x1 = 0x000000000000003a
X2 = 0x0000000000000000
X3 = 0x00000000820003c8
x4 = 0x0000000000000000
x5 = 0x000000009600004
X6 = 0x00000000fc8a4f90
X7 = 0x00000000fc9cccl®
x8 = 0x0000000001000000
x9 = 0x0000000004035200
x10 = 0x0000009fa226e8£3
x11 = 0x0000021e648978a7
x12 = 0x0000000000000002
x13 = 0x0000000000000002
x14 = 0x0000000000000001
x15 = 0x00000000000000ff
x16 = 0x00000000£73£9454
x17 = 0x00000000fcb41000
x18 = 0x00000000fc8a5130
x19 = 0x0000000004035a70

(continues on next page)

1.7. Release notes - TC2-2024.02.22-LSC 37

Total Compute

(continued from previous page)

x20 = 0x0000000000000000
x21 = 0x0000000000000000
x22 = 0x0000000000000000
x23 = 0x0000000000000000
x24 = 0x0000000000000000
x25 = 0x0000000000000000
x26 = 0x0000000000000000
x27 = 0x0000000000000000
x28 = 0x0000000000000000
x29 = 0x0000000000000000
scr_el3 = 0x000000401c07073d
sctlr_el3 = 0x00000000b0cd183f
cptr_el3 = 0x0000000000000000
tcr_el3 = 0x000000008081351c
daif = 0x00000000000003c®
mair_el3 = 0x00000000004404ff
spsr_el3 = 0x00000000630002cd
elr_el3 = 0x0000000004021c30
ttbro_el3 = 0x000000000403c001
esr_el3 = 0x00000000be000211
far_el3 = 0x0000000000000000
spsr_ell = 0x0000000000000000
elr_ell = 0x0000000000000000
spsr_abt = 0x0000000000000000
spsr_und = 0x0000000000000000
spsr_irq = 0x0000000000000000
spsr_£fiq = 0x0000000000000000
sctlr_ell = 0x0000000030d00980
actlr_ell = 0x0000000000000000
cpacr_ell = 0x0000000000300000
csselr_ell = 0x0000000000000004
sp_ell = 0x0000000000000000
esr_ell = 0x0000000000000000
ttbro_ell = 0x0000000000000000
ttbrl_ell = 0x0000000000000000
mair_ell = 0x0000000000000000
amair_ell = 0x0000000000000000
tcr_ell = 0x0000000000000000
tpidr_ell = 0x0000000000000000
tpidr_el® = 0x00000000f501edc®
tpidrro_el® = 0x0000000000000000
par_ell = 0x0000000000000300
mpidr_ell = 0x0000000081000000
afsr@_ell = 0x0000000000000000
afsrl_ell = 0x0000000000000000
contextidr_ell = 0x0000000000000000
vbar_ell = 0x0000000000000000
cntp_ctl_el®d = 0x0000000000000002
cntp_cval_el® = 0x00000020f49a0984
cntv_ctl_el®d = 0x0000000000000002
cntv_cval_el® = 0x00000020ecda7b2f
cntkctl_ell = 0x0000000000000000

(continues on next page)

38 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

(continued from previous page)

sp_el® = 0x00000000fc8a5130
isr_ell = 0x0000000000000040
cpuectlr_ell = 0x0000000000900000

5. Upon running the tf-a-tests, a panic in EL3 is experienced, and some dump information will be presented on the
FVP terminal_uart_ap window, similar to the following excerpt:

...
Running test suite 'Framework Validation'
Description: Validate the core features of the test framework> Executing
— "NVM support'
TEST COMPLETE Passed>.
—Executing 'NVM serialisation'’
TEST COMPLETE Passed>..
—Executing 'Events API'
ERROR: Unexpected affinity info state.
BACKTRACE: START: psci_warmboot_entrypoint
0: EL3: 0x4022478
1: EL3: 0x4029aa®
2: EL3: 0x40201d4
3: EL3: 0x4022550
BACKTRACE: END: psci_warmboot_entrypoint
PANIC in EL3.
x30 = 0x0000000004029aac
x0 = 0x0000000000000001
x1 = 0x0000000000000002
x2 = 0x0000000000000097
x3 = 0x00000000ffffffc8
x4 = 0x0000000000000004
x5 = 0x0000000000000000
X6 = 0x000000000402ab70
x7 = 0x0000000000000000
x8 = 0x0000000001000000
x9 = 0x00000000040201c8
x10 = 0x0000000004021cf4
x11 = 0x00000000£d030000
x12 = 0x00000000fd000800
x13 = 0x0000000080000000
x14 = 0x00000000410fd801
x15 = 0x0000000080000000
x16 = 0x0000000000000000
x17 = 0x0000000000000017
x18 = 0x000000401c070£38
x19 = 0x0000000004020140
x20 = 0x0000000000000000
x21 = 0x000000000403H000
x22 = 0x0000000000000000
x23 = 0x0000000000000000
x24 = 0x0000000000000000
x25 = 0x0000000000000000
x26 = 0x0000000000000000
x27 = 0x0000000000000000

(continues on next page)

1.7. Release notes - TC2-2024.02.22-LSC 39

Total Compute

(continued from previous page)

x28 = 0x0000000000000000
x29 = 0x0000000004030b90
scr_el3 = 0x0000000000030638
sctlr_el3 = 0x00000000b0cd183f
cptr_el3 = 0x0000000040100000
tcr_el3 = 0x000000008081351c
daif = 0x00000000000002c0
mair_el3 = 0x00000000004404ff
spsr_el3 = 0x00000000604003c9
elr_el3 = 0x00000000fd0013d0
ttbro_el3 = 0x000000000403c001
esr_el3 = 0x0000000000000000
far_el3 = 0x0000000000000000
spsr_ell = 0x0000000000000000
elr_ell = 0x0000000000000000
spsr_abt = 0x0000000000000000
spsr_und = 0x0000000000000000
spsr_irq = 0x0000000000000000
spsr_fiq = 0x0000000000000000
sctlr_ell = 0x0000000030d80998
actlr_ell = 0x0000000000000000
cpacr_ell = 0x0000000000000000
csselr_ell = 0x0000000000000000
sp_ell = 0x0000000000000000
esr_ell = 0x0000000000000000
ttbrO_ell = 0x0000000000000000
ttbrl_ell = 0x0000000000000000
mair_ell = 0x0000000000000000
amair_ell = 0x0000000000000000
tcr_ell = 0x0000000030000000
tpidr_ell = 0x0000000000000000
tpidr_el® = 0x0000000000000000
tpidrro_el® = 0x0000000000000000
par_ell = 0xff00000004022980
mpidr_ell = 0x0000000081000000
afsr0_ell = 0x0000000000000000
afsrl_ell = 0x0000000000000000
contextidr_ell = 0x0000000000000000
vbar_ell = 0x0000000000000000
cntp_ctl_el®d = 0x0000000000000000
cntp_cval_el® = 0x0000000000000000
cntv_ctl_el® = 0x0000000000000000
cntv_cval_el® = 0x0000000000000000
cntkctl_ell = 0x0000000000000000
sp_el® = 0x0000000004030b90
isr_ell = 0x0000000000000000
cpuectlr_ell = 0x0000000000900000

40 Chapter 1. Total Compute: TC2-2024.02.22-LSC

Total Compute

1.7.8 Support

For support email: support@arm.com.

Copyright (c) 2022-2024, Arm Limited. All rights reserved.

1.7. Release notes - TC2-2024.02.22-LSC

41

mailto:support@arm.com

Total Compute

42 Chapter 1. Total Compute: TC2-2024.02.22-LSC

CHAPTER
TWO

PREVIOUS RELEASES

This web page provides a list of all the TotalCompute Software Stack releases, cataloged by major version, which can

be used for easy historical reference.

2.1 Latest TC release

TC2-2023.10.04

2.2 TC2 release tags

TC2-2023.08.15
TC2-2023.04.21
TC2-2022.12.07
TC2-2022.08.12

2.3 TC1 release tags

TC1-2022.10.07
TC1-2022.05.12
TC1-2021.08.17

2.4 TCO release tags

TC0-2022.02.25
TC0-2021.07.31
TC0-2021.04.23
TC0-2021.02.09

Copyright (¢) 2022-2024, Arm Limited. All rights reserved.

43

https://totalcompute.docs.arm.com/en/tc2-2023.10.04/totalcompute/tc2/index.html
https://totalcompute.docs.arm.com/en/tc2-2023.08.15/totalcompute/tc2/index.html
https://totalcompute.docs.arm.com/en/tc2-2023.04.21/totalcompute/tc2/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc2-2022.12.07/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc2-2022.08.12/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc1-2022.10.07/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc1-2022.05.12/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc1-2021.08.17/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc0-2022.02.25/docs/totalcompute/index.html
https://arm-reference-solutions-docs.readthedocs.io/en/tc0-2021.07.31/docs/totalcompute/index.html
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-docs/-/tree/TC0-2021.04.23/docs/totalcompute/tc0
https://gitlab.arm.com/arm-reference-solutions/arm-reference-solutions-docs/-/tree/TC0-2021.02.09/docs/totalcompute/tc0

	Total Compute: TC2-2024.02.22-LSC
	Total Compute Platform Software Components
	RSS Firmware
	SCP Firmware
	SCP BL1
	SCP Runtime Firmware

	AP Secure World Software
	AP firmware
	Trusted Firmware-A (TF-A) BL1
	Trusted Firmware-A (TF-A) BL2
	Trusted Firmware-A (TF-A) BL31

	Secure Partition Manager
	Secure Partitions
	OP-TEE
	Trusted Services

	AP Non-Secure World Software
	EDK2 (BL33)
	Grub bootloader
	Linux Kernel
	Debian

	Instructions: Obtaining Total Compute software deliverables
	TC Software Stack Overview
	User Guide
	Notice
	Prerequisites
	Download the source code and build
	Download the source code
	Initial Setup
	Build options
	Debian OS build variant

	Build variants configuration
	Debian build
	Debian build (UEFI boot with ACPI Support)

	Build command
	More about the build system
	Build Components and its dependencies

	Provided components
	Firmware Components
	Trusted Firmware-A
	System Control Processor (SCP)
	Hafnium
	OP-TEE
	S-EL0 trusted-services
	Linux

	Distributions
	Debian Linux distro
	UEFI
	GRUB

	Run scripts

	Obtaining the TC2 FVP
	Running the software on FVP
	Running Debian (UEFI boot with ACPI support)
	Expected behaviour

	Running sanity tests
	ACS (UEFI boot with ACPI support)
	ACPI Test Suite
	Verify the ACPI tables in UEFI shell
	Verify PPTT ACPI table content in Debian shell

	Debugging on Arm Development Studio
	Attach and Debug
	Switch between SCP and AP
	Enable LLVM parser (for Dwarf5 support)
	Arm DS version

	Feature Guide
	Set up TAP interface
	Steps to set up the tap interface
	Steps to graceful disable and remove the tap interface

	Running and Collecting FVP tracing information
	Getting the list of trace sources
	Executing the FVP-model with traces enabled

	Expected test results
	ACS (UEFI boot with ACPI support) Test Suite unit tests
	ACPI Test Suite unit tests

	Troubleshooting: common problems and solutions
	Docker
	Error message: Cannot Connect to a Docker Daemon
	Error message: transport: dial unix /var/run/docker/containerd/docker-containerd.sock: connect: connection refused

	Release notes - TC2-2024.02.22-LSC
	Release tag
	Components
	Hardware Features
	Software Features
	Platform Support
	Tools Support
	Known issues or Limitations
	Support

	Previous releases
	Latest TC release
	TC2 release tags
	TC1 release tags
	TC0 release tags

